首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文对迭代学习控制中的初始态变化的鲁棒特性进行了探讨,针对非线性系统提出了一种基于开环D型的初始态修正的迭代算法,并给出了收敛性证明,最后通过仿真对算法的有效性进行了验证。  相似文献   

2.
This note studies the effect of variable initial state error in iterative learning control (ILC) systems and proposes a new ILC algorithm based on an average operator. Then, it is shown that, when the proposed algorithm is applied to linear time-invariant (LTI) systems, the effect of the initial state error can be exactly estimated under a specific condition, while the existing algorithms guarantee only the boundness of the error or the convergence from stochastic point of view. To show the validity of the proposed algorithm, a numerical example is given.  相似文献   

3.
An adaptive iterative learning control scheme is proposed for a class of discrete-time nonlinear systems with random initial conditions and iteration-varying desired trajectories. The discrete Nussbaum gain method is incorporated into the control design to tackle the problem associated with the lack of a priori knowledge of the control directions. The proposed control algorithm guarantees the boundedness of all the signals in the controlled system. The tracking error converges to zero asymptotically along the iterative learning axis. The effectiveness of the proposed control law is verified through numerical simulation.  相似文献   

4.
高阶无模型自适应迭代学习控制   总被引:1,自引:0,他引:1  
针对一类非线性非仿射离散时间系统,提出了高阶无模型自适应迭代学习控制方案.控制器的设计和分析仅依赖于系统的输入/输出(I/O)数据,不需要已知任何其他知识.该方法采用了高阶学习律,可利用更多以前重复过程中的控制信息提高系统收敛性,且学习增益可通过"拟伪偏导数"更新律迭代调节.仿真结果验证了所提出算法的有效性.  相似文献   

5.
In this paper, a novel iterative adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. When the iterative control law and iterative performance index function in each iteration cannot be accurately obtained, it is shown that the iterative controls can make the performance index function converge to within a finite error bound of the optimal performance index function. Stability properties are presented to show that the system can be stabilized under the iterative control law which makes the present iterative ADP algorithm feasible for implementation both on-line and off-line. Neural networks are used to approximate the iterative performance index function and compute the iterative control policy, respectively, to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.  相似文献   

6.
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T–S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.  相似文献   

7.
On initial conditions in iterative learning control   总被引:5,自引:0,他引:5  
Initial conditions, or initial resetting conditions, play a fundamental role in all kinds of iterative learning control methods. In this note, we study five different initial conditions, disclose the inherent relationship between each initial condition and corresponding learning convergence (or boundedness) property. The iterative learning control method under consideration is based on Lyapunov theory, which is suitable for plants with time-varying parametric uncertainties and local Lipschitz nonlinearities.  相似文献   

8.
陈华东  蒋平 《控制与决策》2002,17(Z1):715-718
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制.与普通迭代学习控制需要学习增益稳定性前提条件不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛.经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ.仿真结果表明了该控制方法的有效性.  相似文献   

9.
In this paper, an adaptive iterative learning control (ILC) method is proposed for switched nonlinear continuous-time systems with time-varying parametric uncertainties. First, an iterative learning controller is constructed with a state feedback term in the time domain and an adaptive learning term in the iteration domain. Then a switched nonlinear continuous-discrete two-dimensional (2D) system is built to describe the adaptive ILC system. Multiple 2D Lyapunov functions-based analysis ensures that the 2D system is exponentially stable, and the tracking error will converge to zero in the iteration domain. The design method of the iterative learning controller is obtained by solving a linear matrix inequality. Finally, the efficacy of the proposed controller is demonstrated by the simulation results.  相似文献   

10.
Fuzzy adaptive sliding-mode control for MIMO nonlinear systems   总被引:5,自引:0,他引:5  
A stable adaptive fuzzy sliding-mode controller is developed for nonlinear multivariable systems with unavailable states. When the system states are not available, the estimated states from a semi-high gain observer are used to construct the output feedback fuzzy controller by incorporating the dynamic sliding mode. It is proved that uniformly asymptotic output feedback stabilization can be achieved with the tracking error approaching to zero. A nonlinear system simulation example is presented to verify the effectiveness of the proposed controller.  相似文献   

11.
In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.  相似文献   

12.
In this paper, the previous results that the performance of iterative learning control (ILC) algorithm can be improved by adding a proportional term and/or an integral term of error in D-type ILC algorithm are generalized using an operator. Then, a sufficient condition for convergence and robustness of the generalized ILC algorithm are investigated against initial state error. As a special case of the operator, a non-linear ILC algorithm is also proposed and it is shown that the effect of initial state error can be reached to zero in a given finite time. It is shown that the bound of error reduction can be effectively controlled by tuning gains of the proposed non-linear ILC algorithm. In order to confirm validity of the proposed algorithms, two examples are presented.  相似文献   

13.
Jian-Xin  Deqing   《Automatica》2008,44(12):3162-3169
In this work, an initial state iterative learning control (ILC) approach is proposed for final state control of motion systems. ILC is applied to learn the desired initial states in the presence of system uncertainties. Four cases are considered where the initial position or speed is a manipulated variable and the final displacement or speed is a controlled variable. Since the control task is specified spatially in states, a state transformation is introduced such that the final state control problems are formulated in the phase plane to facilitate spatial ILC design and analysis. An illustrative example is provided to verify the validity of the proposed ILC algorithms.  相似文献   

14.
In this paper a discrete-time iterative learning controller for single input single output systems is presented. The iterative learning controller works with a reduced sampling rate that ensures the reduction of an appropriate norm of the error trajectory from cycle to cycle and can cope with initial state error. Initial state error occurs when the initial state of the system is different from the initial state that is implicitly given by the reference trajectory. If the initial state changes for every learning iteration, then the controller cannot achieve ideal tracking but the error trajectory is bounded. Using two different sample times together with a potentially time variant learning gain improves the controller performance for dealing with initial state error. Simulation examples are presented to show the results of the proposed iterative learning controller with reduced sampling rate.  相似文献   

15.
This paper constructs a proportional-type networked iterative learning control (NILC) scheme for a class of discrete-time nonlinear systems with the stochastic data communication delay within one operation duration and being subject to Bernoulli-type distribution. In the scheme, the communication delayed data is replaced by successfully captured one at the concurrent sampling moment of the latest iteration. The tracking performance of the addressed NILC algorithm is analysed by statistic technique in virtue of mathematical expectation. The analysis shows that, under certain conditions, the expectation of the tracking error measured in the form of 1-norm is asymptotically convergent to zero. Numerical experiments are carried out to illustrate the validity and effectiveness.  相似文献   

16.
A method to track a desired trajectory by iterative learning control is proposed for uncertain maximum-phase nonlinear systems. The relation between the variations in the initial state, input and output is derived and it is shown that the inverse mapping from the desired output to the initial state and input is stable using the time reversal of unstable manifolds for a maximum-phase system as given by Doyle et al. Based on these facts, an input update law is proposed to find the initial state and the input for perfect tracking. Also, it is shown that perfect tracking can be made possible over a finite control horizon by using a non-causal input starting at any fixed state. Simulation results show that the proposed method works well.  相似文献   

17.
An iterative learning control (ILC) algorithm, which in essence is a stochastic approximation algorithm, is proposed for output tracking for nonlinear stochastic systems with unknown dynamics and unknown noise statistics. The nonlinear function of the system dynamics is allowed to grow up as fast as a polynomial of any degree, but the system is linear with respect to control. It is proved that the ILC generated by the algorithm a.s. converges to the optimal one at each time t/spl isin/[0,1,...,N] and the output tracking error is asymptotically minimized in the mean square sense as the number of iterates tends to infinity, although the convergence rate is rather slow. The only information used in the algorithm is the noisy observation of the system output and the reference signal y/sub d/(t). When the system state equation is free of noise and the system output is realizable, then the exact state tracking is asymptotically achieved and the tracking error is purely due to the observation noise.  相似文献   

18.
In this paper, the anticipatory iterative learning control is extended to a class of nonlinear continuous-time systems without restriction on relative degree. The learning algorithm calculates the required input action for the next operation cycle based on the pair of input action taken and its resultant variables. The tracking error convergence performance is examined under input saturation being taken into account. The learning algorithm is shown effective even if differentiation of any order from the tracking error is not used  相似文献   

19.
It is shown that digital iterative learning controllers can be designed for linear multivariable plants using only the step-response matrices of such plants. This demonstration is effected by proving a fundamental theorem which establishes precise sufficient conditions under which iterative learning control is achieved by such digital controllers. These general results are illustrated by the presentation of numerical results for the digital iterative learning control of a third-order linear multivariable plant with two inputs and two outputs.  相似文献   

20.
This paper deals with the problem of iterative learning control for large-scale interconnected linear systems in the presence of fixed initial shifts. According to the characteristics of the systems, iterative learning control laws are proposed for such large-scale interconnected linear systems based on the PD-type learning schemes. The proposed controller of each subsystem only relies on local output variables without any information exchanges with other subsystems. Using the contraction mapping method, we show that the schemes can guarantee the output of the system converges uniformly to the corresponding output limiting trajectory over the whole time interval along the iteration axis. Simulation examples illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号