首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
《Information and Computation》2007,205(8):1117-1129
In the past decade, there has been a stream of work in designing approximation schemes for dense instances of NP-Hard problems. These include the work of Arora, Karger and Karpinski from 1995 and that of Frieze and Kannan from 1996. We address the problem of proving hardness results for (fully) dense problems, which has been neglected despite the fruitful effort put in upper bounds. In this work, we prove hardness results of dense instances of a broad family of CSP problems, as well as a broad family of ranking problems which we refer to as CSP-Rank. Our techniques involve a construction of a pseudorandom hypergraph coloring, which generalizes the well-known Paley graph, recently used by Alon to prove hardness of feedback arc-set in tournaments.  相似文献   

2.
The Bundle Method and the Volume Algorithm are among the most efficient techniques to obtain accurate Lagrangian dual bounds for hard combinatorial optimization problems. We propose here to compare their performance on very large scale Fixed‐Charge Multicommodity Capacitated Network Design problems. The motivation is not only the quality of the approximation of these bounds as a function of the computational time but also the ability to produce feasible primal solutions and thus to reduce the gap for very large instances for which optimal solutions are out of reach. Feasible solutions are obtained through the use of Lagrangian information in constructive and improving heuristic schemes. We show in particular that, if the Bundle implementation has provided great quality bounds in fewer iterations, the Volume Algorithm is able to reduce the gaps of the largest instances, taking profit of the low computational cost per iteration compared to the Bundle Method.  相似文献   

3.
We describe two approximation schemes for bi-objective combinatorial optimization problems with nonnegative, integer valued objectives. The procedures compute a subset of the efficient points such that any other efficient point is within an arbitrary factor from a computed one with respect to both objectives. Both schemes are simple modifications of classical algorithms for the construction of the whole efficient set.  相似文献   

4.
We consider the out-of-equilibrium time evolution of a nonconserved order parameter using the Ginzburg-Landau equation including memory effects. Memory effects are expected to play important role on the nonequilibrium dynamics for fast phase transitions, in which the time scales of the rapid phase conversion are comparable to the microscopic time scales. We consider two numerical approximation schemes based on Fourier collocation and finite difference methods and perform a numerical analysis with respect to the existence, stability and convergence of the schemes. We present results of direct numerical simulations for one and three spatial dimensions, and examine numerically the stability and convergence of both approximation schemes.  相似文献   

5.
Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, that is, a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on instances of completely positive optimization problems that arise from the reformulation of mixed binary quadratic programming problems. We provide a characterization of the feasibility of such an inner approximation as well as the optimal value of a feasible inner approximation. In particular, our results imply that polyhedral inner approximations are equivalent to a finite discretization of the feasible region of the original completely positive optimization problem. Our characterization yields, as a byproduct, an upper bound on the gap between the optimal value of an inner approximation and that of the original instance. We discuss the implications of this error bound for standard and box-constrained quadratic programs as well as general mixed binary quadratic programs with a bounded feasible region.  相似文献   

6.
The notion of fixed-parameter approximation is introduced to investigate the approximability of optimization problems within the framework of fixed-parameter computation. This work partially aims at enhancing the world of fixed-parameter computation in parallel with the conventional theory of computation that includes both exact and approximate computations. In particular, it is proved that fixed-parameter approximability is closely related to the approximation of small-cost solutions in polynomial time. It is also demonstrated that many fixed-parameter intractable problems are not fixed-parameter approximable. On the other hand, fixed-parameter approximation appears to be a viable approach to solving some inapproximable yet important optimization problems. For instance, all problems in the class MAX SNP admit fixed-parameter approximation schemes in time O(2 O((1−ε/O(1))k) p(n)) for any small ε>0.  相似文献   

7.
Many clustering models define good clusters as extrema of objective functions. Optimization of these models is often done using an alternating optimization (AO) algorithm driven by necessary conditions for local extrema. We abandon the objective function model in favor of a generalized model called alternating cluster estimation (ACE). ACE uses an alternating iteration architecture, but membership and prototype functions are selected directly by the user. Virtually every clustering model can be realized as an instance of ACE. Out of a large variety of possible instances of non-AO models, we present two examples: 1) an algorithm with a dynamically changing prototype function that extracts representative data and 2) a computationally efficient algorithm with hyperconic membership functions that allows easy extraction of membership functions. We illustrate these non-AO instances on three problems: a) simple clustering of plane data where we show that creating an unmatched ACE algorithm overcomes some problems of fuzzy c-means (FCM-AO) and possibilistic c-means (PCM-AO); b) functional approximation by clustering on a simple artificial data set; and c) functional approximation on a 12 input 1 output real world data set. ACE models work pretty well in all three cases  相似文献   

8.
In optimization theory an essential assumption for the existence of solutions as well as the convergence of algorithms is the compactness of the so-called level sets. Here some general tools for the proof of this property in the case of minimum norm problems are provided. Finally for an approximation problem suggested in [3] for the numerical solution of a class of free boundary problems, compactness of the corresponding sets is shown. Therewith for this approximation problem, existence of a solution and in addition global convergence of the family of algorithms presented in [4] is guaranteed.  相似文献   

9.

Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approximating instances as their bounding box. We address the showcase scenario of dense homogeneous layouts in which this approximation does not hold. In this scenario, outlining unoccluded instances by decoding a deep encoder becomes difficult, due to the translation invariance of convolutional layers and the lack of complexity in the decoder. We therefore propose a multicameral design composed of subtask-specific lightweight decoder and encoder–decoder units, coupled in cascade to encourage subtask-specific feature reuse and enforce a learning path within the decoding process. Furthermore, the state-of-the-art datasets for occlusion-aware instance segmentation contain real images with few instances and occlusions mostly due to objects occluding the background, unlike dense object layouts. We thus also introduce a synthetic dataset of dense homogeneous object layouts, namely Mikado, which extensibly contains more instances and inter-instance occlusions per image than these public datasets. Our extensive experiments on Mikado and public datasets show that ordinal multiscale units within the decoding process prove more effective than state-of-the-art design patterns for capturing position-sensitive representations. We also show that Mikado is plausible with respect to real-world problems, in the sense that it enables the learning of performance-enhancing representations transferable to real images, while drastically reducing the need of hand-made annotations for finetuning. The proposed dataset will be made publicly available.

  相似文献   

10.
Euclidean optimization problems such as TSP and minimum-length matching admit fast partitioning algorithms that compute near-optimal solutions on typical instances. In order to explain this performance, we develop a general framework for the application of smoothed analysis to partitioning algorithms for Euclidean optimization problems. Our framework can be used to analyze both the running-time and the approximation ratio of such algorithms. We apply our framework to obtain smoothed analyses of Dyer and Frieze’s partitioning algorithm for Euclidean matching, Karp’s partitioning scheme for the TSP, a heuristic for Steiner trees, and a heuristic for degree-bounded minimum-length spanning trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号