首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate labeled resolution calculi for hybrid logics with inference rules restricted via selection functions and orders. We start by providing a sound and refutationally complete calculus for the hybrid logic H(@,ˉ,A)\mathcal{H}(@,{\downarrow},\mathsf{A}), even under restrictions by selection functions and orders. Then, by imposing further restrictions in the original calculus, we develop a sound, complete and terminating calculus for the H(@)\mathcal{H}(@) sublanguage. The proof scheme we use to show refutational completeness of these calculi is an adaptation of a standard completeness proof for saturation-based calculi for first-order logic that guarantees completeness even under redundancy elimination. In fact, one of the contributions of this article is to show that the general framework of saturation-based proving for first-order logic with equality can be naturally adapted to saturation-based calculi for other languages, in particular modal and hybrid logics.  相似文献   

2.

We develop foundations for computing Craig-Lyndon interpolants of two given formulas with first-order theorem provers that construct clausal tableaux. Provers that can be understood in this way include efficient machine-oriented systems based on calculi of two families: goal-oriented such as model elimination and the connection method, and bottom-up such as the hypertableau calculus. We present the first interpolation method for first-order proofs represented by closed tableaux that proceeds in two stages, similar to known interpolation methods for resolution proofs. The first stage is an induction on the tableau structure, which is sufficient to compute propositional interpolants. We show that this can linearly simulate different prominent propositional interpolation methods that operate by an induction on a resolution deduction tree. In the second stage, interpolant lifting, quantified variables that replace certain terms (constants and compound terms) by variables are introduced. We justify the correctness of interpolant lifting (for the case without built-in equality) abstractly on the basis of Herbrand’s theorem and for a different characterization of the formulas to be lifted than in the literature. In addition, we discuss various subtle aspects that are relevant for the investigation and practical realization of first-order interpolation based on clausal tableaux.

  相似文献   

3.
Decidability by Resolution for Propositional Modal Logics   总被引:1,自引:0,他引:1  
The paper shows that satisfiability in a range of popular propositional modal systems can be decided by ordinary resolution procedures. This follows from a general result that resolution combined with condensing, and possibly some additional form of normalization, is a decision procedure for the satisfiability problem in certain so-called path logics. Path logics arise from normal propositional modal logics by the optimized functional translation method. The decision result provides an alternative method of proving decidability for modal logics, as well as closely related systems of artificial intelligence. This alone is not interesting. A more far-reaching consequence of the result has practical value, namely, many standard first-order theorem provers that are based on resolution are suitable for facilitating modal reasoning.  相似文献   

4.
A resolution based proof system for a Temporal Logic of Possible Belief is presented. This logic is the combination of the branching-time temporal logic CTL (representing change over time) with the modal logic KD45 (representing belief ). Such combinations of temporal or dynamic logics and modal logics are useful for specifying complex properties of multi-agent systems. Proof methods are important for developing verification techniques for these complex multi-modal logics. Soundness, completeness and termination of the proof method are shown and simple examples illustrating its use are given.  相似文献   

5.
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. Although a complete and correct resolution-style calculus has already been suggested for this specific fragment, this calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-oriented clausal resolution method which features radically simplified proof search. We first define a normal form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.  相似文献   

6.
Resolution is a well-known proof method for classical logics that is well suited for mechanization. The most fruitful approach in the literature on temporal logic, which was started with the seminal paper of M. Fisher, deals with Propositional Linear-time Temporal Logic (PLTL) and requires to generate invariants for performing resolution on eventualities. The methods and techniques developed in that approach have also been successfully adapted in order to obtain a clausal resolution method for Computation Tree Logic (CTL), but invariant handling seems to be a handicap for further extension to more general branching temporal logics. In this paper, we present a new approach to applying resolution to PLTL. The main novelty of our approach is that we do not generate invariants for performing resolution on eventualities. Hence, we say that the approach presented in this paper is invariant-free. Our method is based on the dual methods of tableaux and sequents for PLTL that we presented in a previous paper. Our resolution method involves translation into a clausal normal form that is a direct extension of classical CNF. We first show that any PLTL-formula can be transformed into this clausal normal form. Then, we present our temporal resolution method, called trs-resolution, that extends classical propositional resolution. Finally, we prove that trs-resolution is sound and complete. In fact, it finishes for any input formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL.  相似文献   

7.
In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4.2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular with respect to both properties of the accessibility relation in the Kripke frame and the way domains of individuals change between worlds. Our approach has a modular metatheory too; soundness, completeness and normalization are proved uniformly for every logic in our class. Finally, our work leads to a simple implementation of a modal logic theorem prover in a standard logical framework.  相似文献   

8.
Intersection types discipline allows to define a wide variety of models for the type free lambda-calculus, but the Curry–Howard isomorphism breaks down for this kind of type systems. In this paper we show that the correspondence between types and suitable logical formulas can still be recovered appealing to the fact that there is a strict connection between the semantics for lambda-calculus induced by the intersection types and a Kripke-style semantics for modal and relevant logics. Indeed, we present a modal logic hinted by the analysis of the sub-typing relation for intersection types, and we show that the deduction relation for such a modal system is a conservative extension of the relation of sub-typing. Then, we define a Kripke-style semantics for the formulas of such a system, present suitable sequential calculi, prove a completeness theorem and give a syntactical proof of the cut elimination property. Finally, we define a decision procedure for theorem-hood and we show that it yields the finite model property and cut-redundancy.  相似文献   

9.
Several justification logics have been created, starting with the logic LP, (Artemov, Bull Symbolic Logic 7(1):1–36, 2001). These can be thought of as explicit versions of modal logics, or of logics of knowledge or belief, in which the unanalyzed necessity (knowledge, belief) operator has been replaced with a family of explicit justification terms. We begin by sketching the basics of justification logics and their relations with modal logics. Then we move to new material. Modal logics come in various strengths. For their corresponding justification logics, differing strength is reflected in different vocabularies. What we show here is that for justification logics corresponding to modal logics extending T, various familiar extensions are actually conservative with respect to each other. Our method of proof is very simple, and general enough to handle several justification logics not directly corresponding to distinct modal logics. Our methods do not, however, allow us to prove comparable results for justification logics corresponding to modal logics that do not extend T. That is, we are able to handle explicit logics of knowledge, but not explicit logics of belief. This remains open.  相似文献   

10.
11.
Abstract

In previous papers (O'Hearn &; Stachniak 1989b, Stachniak &; O'Hearn 1990, Stachniak 1989,1990a) we proposed an algebraic methodological framework for the introduction and analysis of resolution proof systems for finitely-valued logical calculi. In the present paper we extend this approach to a wider class of the so-called resolution logics.  相似文献   

12.
This paper introduces an axiomatisation for equational hybrid logic based on previous axiomatizations and natural deduction systems for propositional and first-order hybrid logic. Its soundness and completeness is discussed. This work is part of a broader research project on the development a general proof calculus for hybrid logics.  相似文献   

13.
An approach to applying clausal resolution, a proof method well suited to mechanisation, to temporal logics has been developed by Fisher. The method involves translation to a normal form, classical style resolution within states, and temporal resolution between states. Not only has it been shown to be correct but as it consists of only one temporal resolution rule, it is particularly suitable as the basis of an automated temporal resolution theorem prover. As the application of the temporal resolution rule is the most costly part of the method, it is on this area that we focus. Detailed algorithms for abreadth‐first search approach to the application of this rule are presented. Correctness is shown and complexity given. Analysis of the behaviour of the algorithms is carried out and we explain why this approach is an improvement to others suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A focused proof system provides a normal form to cut-free proofs in which the application of invertible and non-invertible inference rules is structured. Within linear logic, the focused proof system of Andreoli provides an elegant and comprehensive normal form for cut-free proofs. Within intuitionistic and classical logics, there are various different proof systems in the literature that exhibit focusing behavior. These focused proof systems have been applied to both the proof search and the proof normalization approaches to computation. We present a new, focused proof system for intuitionistic logic, called LJF, and show how other intuitionistic proof systems can be mapped into the new system by inserting logical connectives that prematurely stop focusing. We also use LJF to design a focused proof system LKF for classical logic. Our approach to the design and analysis of these systems is based on the completeness of focusing in linear logic and on the notion of polarity that appears in Girard’s LC and LU proof systems.  相似文献   

15.
This paper studies several applications of the notion of a presentation of a functor by operations and equations. We show that the technically straightforward generalisation of this notion from the one-sorted to the many-sorted case has several interesting consequences. First, it can be applied to give equational logic for the binding algebras modelling abstract syntax. Second, it provides a categorical approach to algebraic semantics of first-order logic. Third, this notion links the uniform treatment of logics for coalgebras of an arbitrary type T with concrete syntax and proof systems. Analysing the many-sorted case is essential for modular completeness proofs of coalgebraic logics.  相似文献   

16.
We present a natural deduction proof system for the propositional modal μ-calculus and its formalization in the calculus of inductive constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in the presence of recursive constructors, and the formalization of modal (sequent-style) rules and of context sensitive grammars. The formalization can be used in the system Coq, providing an experimental computer-aided proof environment for the interactive development of error-free proofs in the modal μ-calculus. The techniques we adopt can be readily ported to other languages and proof systems featuring similar problematic issues.  相似文献   

17.
18.
In a broad sense, logic is the field of formal languages for knowledge and truth that have a formal semantics. It tends to be difficult to give a narrower definition because very different kinds of logics exist. One of the most fundamental contrasts is between the different methods of assigning semantics. Here two classes can be distinguished: model theoretical semantics based on a foundation of mathematics such as set theory, and proof theoretical semantics based on an inference system possibly formulated within a type theory.Logical frameworks have been developed to cope with the variety of available logics unifying the underlying ontological notions and providing a meta-theory to reason abstractly about logics. While these have been very successful, they have so far focused on either model or proof theoretical semantics. We contribute to a unified framework by showing how the type/proof theoretical Edinburgh Logical Framework (LF) can be applied to the representation of model theoretical logics.We give a comprehensive formal representation of first-order logic, covering both its proof and its model theoretical semantics as well as its soundness in LF. For the model theory, we have to represent the mathematical foundation itself in LF, and we provide two solutions for that. Firstly, we give a meta-language that is strong enough to represent the model theory while being simple enough to be treated as a fragment of untyped set theory. Secondly, we represent Zermelo-Fraenkel set theory and show how it subsumes our meta-language. Specific models are represented as LF morphisms.All representations are given in and mechanically verified by the Twelf implementation of LF. Moreover, we use the Twelf module system to treat all connectives and quantifiers independently. Thus, individual connectives are available for reuse when representing other logics, and we obtain the first version of a feature library from which logics can be pieced together.Our results and methods are not restricted to first-order logic and scale to a wide variety of logical systems, thus demonstrating the feasibility of comprehensively formalizing large scale representation theorems in a logical framework.  相似文献   

19.
Hypersequent calculi, introduced independently by Pottinger and Avron, provide a powerful generalization of ordinary sequent calculi. In the paper we present a proof of eliminability of cut in hypersequent calculi for three modal logics of linear frames: K4.3, KD4.3 and S4.3. Our cut-free calculus is based on Avron's HC formalization for Gödel–Dummett's logic. The presented proof of eliminability of cut is purely syntactical and based on Ciabattoni, Metcalfe, Montagna's proof of eliminability of cut for hypersequent calculi for some fuzzy logics with modalities.  相似文献   

20.
The goal of this paper is to show how modal logic may be conceived as recording the derived rules of a logical system in the system itself. This conception of modal logic was propounded by Dana Scott in the early seventies. Here, similar ideas are pursued in a context less classical than Scott's.First a family of propositional logical systems is considered, which is obtained by gradually adding structural rules to a variant of the nonassociative Lambek calculus. In this family one finds systems that correspond to the associative Lambek calculus, linear logic, relevant logics, BCK logic and intuitionistic logic. Above these basic systems, sequent systems parallel to the basic systems are constructed, which formalize various notions of derived rules for the basic systems. The deduction theorem is provable for the basic systems if, and only if, they are at least as strong as systems corresponding to linear logic, or BCK logic, depending on the language, and their deductive metalogic is not stronger than they are.However, though we do not always have the deduction theorem, we may always obtain a modal analogue of the deduction theorem for conservative modal extensions of the basic systems. Modal postulates which are necessary and sufficient for that are postulates of S4 plus modal postulates which mimic structural rules. For example, the modal postulates which Girard has recently considered in linear logic are necessary and sufficient for the modal analogue of the deduction theorem.All this may lead towards results about functional completeness in categories. When functional completeness, which is analogous to the deduction theorem, fails, we may perhaps envisage a modal analogue of functional completeness in a modal category, of which our original category is a full subcategory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号