首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
分水岭优化的Snake模型肝脏图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
Snake算法是主动轮廓模型的经典算法,是近年来图像分割和视频领域研究的热点。针对Snake模型中存在的初始轮廓敏感和能量函数中曲率约束不足等问题,提出将分水岭变换和主动轮廓模型相结合的主动轮廓分割算法。首先通过引入标记函数和强制最小值技术解决传统分水岭变换可能导致的过分割问题,然后利用改进的强制标记分水岭算法优化Snake模型的初始轮廓曲线,最后通过在Snake模型中增加一项与曲线形状相关的外部力弥补能量约束函数中曲率约束的不足,从而实现更精确的图像分割。改进后的Snake模型应用于腹部MR图像中,对肝脏图像的识别和分割取得了良好效果。  相似文献   

2.
为解决传统Snake模型对初始轮廓敏感和凹陷边界提取困难的问题,分别提出了双阈值分割算法和Snake模型的改进方案.通过双阈值分割算法与形态学运算、滤波技术的综合应用,获得靠近边缘的初始轮廓.采用改进的Snake模型使初始轮廓跟踪到实际边界.由于对模型的能量定义做了调整,凹陷边界也可被准确跟踪.通过临床采集的20例乳腺图像肿瘤边缘的提取和分析,结果表明,该方法能有效提取出肿瘤边缘,实现超声肿瘤的自动分割.  相似文献   

3.
基于改进Snake模型的图像分割方法   总被引:5,自引:2,他引:5  
曾理  侯立华 《计算机仿真》2006,23(7):180-182
Snake(主动轮廓线)模型即能量最小化运动曲线模型,最初由Kass在1987年提出,具有良好的获取特定区域内目标边缘的能力,是一种极为有效的图像分割方法。针对传统Snake模型对初始轮廓的依赖性问题,利用围绕目标形心的圆环间平均灰度差异来确定初始轮廓点,对噪声的干扰有一定的抑制作用,并减少了人工选取的工作量。通过离散Snake算法与分段DP算法的有效结合来获取图像的特征边缘点,以提高Snake算法的收敛速度。最后利用单调性原则对边缘点进行分区,在各个单调区间内采用曲线拟合的方法来获得连续的图像边缘。实验结果表明,基于改进Snake模型的图像分割方法可以从图像中提取连续、封闭的边缘曲线,能够较好的将目标从图像中提取出来。  相似文献   

4.
针对尿沉渣图像的背景和目标区分度低、有形成分复杂,导致提取困难的问题,设计了基于加权梯度和Snake模型的尿沉渣提取算法.首先采用基于区域生长的阈值分割方法对尿沉渣进行粗定位,然后通过形态学的方法确定Snake模型的初始蛇,最后将加权梯度融入到Snake模型中,完成对尿沉渣的准确提取.实验表明算法性能稳定,所提取的尿沉渣区域定位准确.特别是解决了虚假边缘和边缘断裂现象较为严重的尿沉渣轮廓提取.  相似文献   

5.
针对医学舌体数字图像的准确分割,提出了一种基于细菌觅食优化算法(BFOA) 和 Snake 活动轮廓模型相组合的舌体分割算法。首先,以信息熵与 Kapur 算法相结合作为自适 应函数来改进 BFOA 算法,通过改进的 BFOA 算法计算舌体图像的最佳图像二值化阈值,并将 舌体图像二值化;然后,利用舌体图像的对称性提取舌体的关键边缘点,并基于 B-样条插值算 法由关键点集合插值得到闭合的 B-样条曲线,作为 Snake 模型的初始轮廓;最后,通过 Snake 模型计算求解,即可准确提取舌体的轮廓曲线。实验结果表明,改进算法能够高精度地分割出 舌体图像,并能消除基本 Snake 模型在初始轮廓曲线选取中存在的人机交互难题,实现了舌体 图像的自动分割。  相似文献   

6.
改进Snake模型在医学超声图像分割中的应用   总被引:1,自引:0,他引:1  
因其本身所具有的复杂性,医学超声图像的分割足一件非常困难的事情.Snake算法能够有效地利用图像局部与整体的信息,实现对边界的准确定位,因此非常适用于医学超声图像的处理.针对传统Snake模型对初始轮廓依赖性的问题,根据图像边缘附近灰度差异显著的特性,提出了获取初始轮廓点的方法--扇形法,运用方法可以获得靠近日标边界的初始轮廓点,并且得到的轮廓点是有序点集.能量最小化过程运用贪婪算法来获得图像的特征边缘点,最后采用分段多项式拟合的方法来获得连续的图像边缘.实验结果表明.所采用的方法可以获得连续、封闭的边缘曲线,能够较好的将目标从图像中提取出来.  相似文献   

7.
数字摄像技术在降水粒子的自动观测中具有非常好的应用前景,如何在数字图像中准确地进行降水粒子的边缘检测是其中的一项关键技术。Snake模型具有很好的融合图像上层知识和底层特征的能力,能够实现目标轮廓的准确定位。结合雨滴图像自身的特点,提出了目标形心的自动标定方法,在此基础上改进了Snake模型初始轮廓点的选取方法,并通过贪婪算法进行迭代处理,实现了基于Snake模型的雨滴边缘检测算法。算法能够准确地对数字图像中的雨滴边缘轮廓进行检测,且具有较好的稳定性。与传统的边缘检测算子相比,该方法对雨滴图像获得了更好的边缘检测效果。  相似文献   

8.
红外图像通常存在边缘模糊、对比度低、背景复杂等特点,传统的活动轮廓模型难以达到理想的分割效果。针对这种情况,提出了一种能够用于红外图像分割的边缘活动轮廓模型。该模型采用了结合图像局部熵信息定义的边缘停止函数,同时提出了一种针对红外图像的自动选取初始轮廓的方法,进一步提高了算法的效率。实验结果表明,采用该模型能够有效分割红外图像。  相似文献   

9.
为了能够提高图像边缘检测的准确度,提出一种新型图像处理算法.该算法是基于主动轮廓方法和拓扑路线相结合的方法,目的是提高图像检测过程的精确度.该算法提出了新型技术来整合拓扑路线和主动轮廓方法各自的优点.将基于拓扑路线的初始分割边界作为Snake模型输入信号,并逐步演化成为最终对象的分割边界.实验结果表明,该算法可以处理低对比度图像,同时可以提高针对弱图像边界进行分割的准确度,取得了更好的图像分割和边缘检测效果,说明该算法有改进低对比度和自动图像分割系统的处理能力.  相似文献   

10.
改进的主动轮廓模型在脑肿瘤MRI图像轮廓提取中的应用   总被引:1,自引:0,他引:1  
针对主动轮廓模型(Snake)处理图像时的初始轮廓选取问题,采用改进的区域增长法对图像进行预分割,并将得到的边缘作为主动轮廓模型的初始边缘轮廓;然后分别用sobel算子与梯度矢量流(GVF)代替图像梯度进行主动轮廓模型外部能量的计算,在速度满足要求的情况下,提高了目标区域的提取精度.实验结果表明,基于GVF的主动轮廓模型在脑肿瘤的轮廓提取中能取得更好的效果.  相似文献   

11.
汪梅  李琳  汪斌  何高明 《计算机科学》2017,44(5):314-319
主动轮廓模型(snake模型)被广泛应用于边缘提取、图像分割等领域。该模型能对目标适当初始化,并进行自主收敛,使得能量处于极小值状态,以达到目标分离的效果。当目标初始位置敏感时,需要依赖其他机制对内部能量进行合理初始化,由于模型的非凸性,它有可能收敛到局部极值点甚至发散。将分水岭算法应用于主动轮廓模型的能量分割算法,通过改进的分水岭算法确定主动轮廓模型的初始轮廓,利用迭代完成对轮廓点周围的局部近邻点的检索,以选取更小的轮廓模型,当获得最小值时完成目标轮廓的提取。  相似文献   

12.
基于动态轮廓模型的羽毛分割改进算法   总被引:1,自引:0,他引:1  
从羽毛图像中分割毛杆适合采用动态轮廓模型,而原始原模型易受局部强边缘干扰产生偏差,且计算规模偏大。根据毛杆的特性,提出用毛杆中心线和毛杆宽度来代替毛杆轮廓,把模型中二维轮廓曲线变化成两个相互独立的一维函数,并据此修改能量方程。改进算法利用对称性避免强边缘干扰,减少了计算规模,能实现全自动分割。实验表明该算法具有较强的抗噪性,使分割毛杆效果良好,能满足工业需要。  相似文献   

13.
在基于彩色图像中的人脸检测的人脸定位问题上,针对snake算法受能量函数的初始状态影响大等缺点,提出了一种改进的snake算法。引入目标图像的质心和目标的最大拉长度作为优先信息确定snake的初始状态,很好地弥补了snake算法的不足。同时减小了搜索的范围,降低了复杂程度,增加了实时性,定位效果也得到大大的提高。  相似文献   

14.
This paper presents a region merging-based automatic tongue segmentation method. First, gradient vector flow is modified as a scalar diffusion equation to diffuse the tongue image while preserving the edge structures of tongue body. Then the diffused tongue image is segmented into many small regions by using the watershed algorithm. Third, the maximal similarity-based region merging is used to extract the tongue body area under the control of tongue marker. Finally, the snake algorithm is used to refine the region merging result by setting the extracted tongue contour as the initial curve. The proposed method is qualitatively tested on 200 images by traditional Chinese medicine practitioners and quantitatively tested on 50 tongue images using the receiver operating characteristic analysis. Compared with the previous active contour model-based bi-elliptical deformable contour algorithm, the proposed method greatly enhances the segmentation performance, and it could reliably extract the tongue body from different types of tongue images.  相似文献   

15.
An active contour model, called snake, can adapt to object boundary in an image. A snake is defined as an energy minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines or edges. The traditional snake model fails to locate object contours that appear in complex background. In this paper, we present an improved snake model associated with new regional similarity energy and a gravitation force field to attract the snake approaching the object contours efficiently. Experiment results show that our snake model works successfully for convex and concave objects in a variety of complex backgrounds.  相似文献   

16.
Accurately tracking the video object in video sequence is a crucial stage for video object processing which has wide applications in different fields. In this paper, a novel video object tracking algorithm based on the improved gradient vector flow (GVF) snake model and intra-frame centroids tracking algorithm is proposed. Unlike traditional gradient vector flow snake, the improved gradient vector flow snake adopts anisotropic diffusion and a four directions edge operator to solve the blurry boundary and edge shifting problem. Then the improved gradient vector flow snake is employed to extract the object contour in each frame of the video sequence. To set the initial contour of the gradient vector flow snake automatically, we design an intra-frame centroids tracking algorithm. Splitting the original video sequence into segments, for each segment, the initial contours of first two frames are set by change detection based on t-distribution significance test. Then, utilizing the redundancy between the consecutive frames, the subsequent frames’ initial contours are obtained by intra-frame motion vectors. Experimental results with several test video sequences indicate the validity and accuracy of the video object tracking.  相似文献   

17.
基于预测和粒子滤波的运动目标跟踪算法   总被引:1,自引:0,他引:1  
本文提出了一种改进的基于预测和粒子滤波的运动目标跟踪算法,在预测算法的基础上,结合GVF-SNAKE理论和粒子滤波器,实现了对运动目标的准确跟踪。本算法首先根据预测算法得到目标初始预测轮廓,把初始预测轮廓上的每个蛇点作为一个目标,利用粒子滤波算法对各蛇点分别进行预测,得到各蛇点的最终预测轮廓,从而实现了运动目标的准确跟踪。实验结果表明,本文算法能够对运动目标进行准确的跟踪,并具有较强的抗遮挡能力。  相似文献   

18.
在计算光流场的基础上,提出了snake算法中一种新的外部能量函数,并利用光流场的运动矢量来预测下帧图像中snake的初始值,不仅与无预测的算法相比能提高收敛的速度,而且收敛结果更贴近于目标的本身。实验证明了该文算法的优越性。  相似文献   

19.
Segmentation of the left ventricle (LV) is a hot topic in cardiac magnetic resonance (MR) images analysis. In this paper, we present an automatic LV myocardial boundary segmentation method using the parametric active contour model (or snake model). By convolving the gradient map of an image, a fast external force named gradient vector convolution (GVC) is presented for the snake model. A circle-based energy is incorporated into the GVC snake model to extract the endocardium. With this prior constraint, the snake contour can conquer the unexpected local minimum stemming from artifacts and papillary muscle, etc. After the endocardium is detected, the original edge map around and within the endocardium is directly set to zero. This modified edge map is used to generate a new GVC force filed, which automatically pushes the snake contour directly to the epicardium by employing the endocardium result as initialization. Meanwhile, a novel shape-similarity based energy is proposed to prevent the snake contour from being strapped in faulty edges and to preserve weak boundaries. Both qualitative and quantitative evaluations on our dataset and the publicly available database (e.g. MICCAI 2009) demonstrate the good performance of our algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号