首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery   总被引:2,自引:0,他引:2  
Soil moisture is important information in semiarid rangelands where vegetation growth is heavily dependent on the water availability. Although many studies have been conducted to estimate moisture in bare soil fields with Synthetic Aperture Radar (SAR) imagery, little success has been achieved in vegetated areas. The purpose of this study is to extract soil moisture in sparsely to moderately vegetated rangeland surfaces with ERS-2/TM synergy. We developed an approach to first reduce the surface roughness effect by using the temporal differential backscatter coefficient (Δσwet-dry0). Then an optical/microwave synergistic model was built to simulate the relationship among soil moisture, Normalized Difference Vegetation Index (NDVI) and Δσwet-dry0. With NDVI calculated from TM imagery in wet seasons and Δσwet-dry0 from ERS-2 imagery in wet and dry seasons, we derived the soil moisture maps over desert grass and shrub areas in wet seasons. The results showed that in the semiarid rangeland, radar backscatter was positively correlated to NDVI when soil was dry (mv<10%), and negatively correlated to NDVI when soil moisture was higher (mv>10%). The approach developed in this study is valid for sparse to moderate vegetated areas. When the vegetation density is higher (NDVI>0.45), the SAR backscatter is mainly from vegetation layer and therefore the soil moisture estimation is not possible in this study.  相似文献   

2.
Remote sensing offers a nondestructive tool for the quick and precise estimation of canopy chlorophyll content that serves as an important indicator of the plant ecosystem. In this study, the canopy chlorophyll content of 26 samples in 2007 and 40 samples in 2008 of maize were nondestructively estimated by a set of vegetation indices (VIs; Normalized Difference Vegetation Index, NDVI; Green Chlorophyll Index, CIgreen; modified soil adjust vegetation index, MSAVI; and Enhanced Vegetation Index, EVI) derived from the hyperspectral Hyperion and Thematic Mapper (TM) images. The PROSPECT model was used for sensitivity analysis among the indices and results indicated that CIgreen had a large linear correlation with chlorophyll content ranging from 100–1000 mg m?2. EVI showed a moderate ability in avoiding saturation and reached a saturation of chlorophyll content above 600 mg m?2. Both of the other two indices, MSAVI and NDVI, showed a clear saturation at chlorophyll content of 400 mg m?2, which demonstrated they may be inappropriate for chlorophyll interpretation at high values. A validation study was also conducted with satellite observations (Hyperion and TM) and in-situ measurements of chlorophyll content in maize. Results indicated that canopy chlorophyll content can be remotely evaluated by VIs with r 2 ranging from the lowest of 0.73 for NDVI to the highest of 0.86 for CIgreen. EVI had a greater precision (r 2=0.81) than MASVI (r 2=0.75) in canopy chlorophyll content estimation. The results agreed well with the sensitivity study and will be helpful in developing future models for canopy chlorophyll evaluation.  相似文献   

3.
Since optical and microwave sensors respond to very different target characteristics, their role in crop monitoring can be viewed as complementary. In particular, the all‐weather capability of Synthetic Aperture Radar (SAR) sensors can ensure that data gaps that often exist during monitoring with optical sensors are filled. There were three Landsat Thematic Mapper (TM) satellite images and three Envisat Advanced Synthetic Aperture Radar (ASAR) satellite images acquired from reviving stage to milking stage of winter wheat. These data were successfully used to monitor crop condition and forecast grain yield and protein content. Results from this study indicated that both multi‐temporal Envisat ASAR and Landsat TM imagery could provide accurate information about crop conditions. First, bivariate correlation results based on the linear regression of crop variables against backscatter suggested that the sensitivity of ASAR C‐HH backscatter image to crop or soil condition variation depends on growth stage and time of image acquisition. At the reviving stage, crop variables, such as biomass, Leaf Area Index (LAI) and plant water content (PWC), were significantly positively correlated with C‐HH backscatter (r = 0.65, 0.67 and 0.70, respectively), and soil water content at 5 cm, 10 cm and 20 cm depths were correlated significantly with C‐VV backscatter (r = 0.44, 0.49 and 0.46, respectively). At booting stage, only a significant and negative correlation was observed between biomass and C‐HH backscatter (r = ?0.44), and a saturation of the SAR signal to canopy LAI could explain the poor correlation between crop variables and C‐HH backscatter. Furthermore, C‐HH backscatter was correlated significantly with soil water content at booting and milking stage. Compared with ASAR backscatter data, the multi‐spectral Landsat TM images were more sensitive to crop variables. Secondly, a significant and negative correlation between grain yield and ASAR C‐HH & C‐VV backscatter at winter wheat booting stage was observed (r = ?0.73 and ?0.55, respectively) and a yield prediction model with a correlation coefficient of 0.91 was built based on the Normalized Difference Water Index (NDWI) data from Landsat TM on 17 April and ASAR C‐HH backscatter on 27 April. Finally, grain protein content was found to be correlated significantly with ASAR C‐HH backscatter at milking stage (r = ?0.61) and with Structure Insensitive Pigment Index (SIPI) data from Landsat TM at grain‐filling stage (r = 0.53), and a grain protein content prediction model with a correlation coefficient of 0.75 was built based on the C‐HH backscatter and SIPI data.  相似文献   

4.
极化分解技术在估算植被覆盖地区土壤水分变化中的应用   总被引:3,自引:0,他引:3  
地表植被覆盖是影响雷达遥感估算土壤水分的主要因素之一。本文探讨了将极化分解技术与植被覆盖地区的一阶散射模型结合估算土壤水分变化的方法。雷达数据经极化目标分解技术分解后得到的双次散射项和一阶植被散射模型的植被-地表的双次散射项一一对应,再利用多时相雷达数据消除植被层后向散射的影响,从而估算出地表土壤水分变化量。最后应用全极化机载雷达数据(AirSAR)对该方法进行了检验,结果表明该方法能够较好的估算植被覆盖地表的土壤水分变化。  相似文献   

5.
The aim of this study was to estimate soil moisture from RADARSAT-2 Synthetic Aperture Radar (SAR) images acquired over agricultural fields. The adopted approach is based on the combination of semi-empirical backscattering models, four RADARSAT-2 images and coincident ground measurements (soil moisture, soil surface roughness and vegetation characteristics) obtained near Saskatoon, Saskatchewan, Canada during the summer of 2008. The depolarization ratio (χv), the co-polarized correlation coefficient (ρvvhh) and the ratio of the absolute value of cross polarization to crop height (Λvh) derived from RADARSAT-2 data were analyzed with respect to changes in soil surface roughness, crop height, soil moisture and vegetation water content. This sensitivity analysis allowed us to develop empirical relationships for soil surface roughness, crop height and crop water content estimation regardless of crop type. The latter were then used to correct the semi-empirical Water-Cloud model for soil surface roughness and vegetation effects in order to retrieve soil moisture data. The soil moisture retrieved algorithm is evaluated over mature crop fields (wheat, pea, lentil, and canola) using ground measurements. Results show average relative errors of 19%, 10%, 25.5% and 32% respectively for the retrieval of crop height, soil surface roughness, crop water content and soil moisture.  相似文献   

6.
Doñana National Park wetlands, in South West Spain, undergo yearly cycles of inundation and drying out. During the hydrological year 2006-2007, 43 ASAR/Envisat images of Doñana, mostly in HH and VV polarizations, were acquired with the aim to monitor the flood extent evolution during an entire flooding cycle. The images were ordered in the seven ASAR incidence angles, also referred to as swaths, to achieve high observation frequency.In this study, backscattering temporal signatures of the main land cover types in Doñana were obtained for the different incidence angles and polarizations. Plots showing the σ0HH/σ0VV ratio behavior were also produced. The signatures were analyzed with the aid of miscellaneous site data in order to identify the effect of the flooding on the backscattering. Conclusions on the feasibility to discriminate emerged versus flooded land are derived for the different incidence angles, land cover types and phenological stages: intermediate incidence angles (ASAR IS3 and IS4) came up as the most appropriate single swaths to discriminate open water surface from smooth bare soil in the marshland deepest areas. Flood mapping in pasture lands, the most elevated regions, is feasible at steep to mid incidence angles (ASAR IS1 to IS4). In the medium elevation zones, colonized by large helophytes, shallow incidence angles (ASAR IS6 and IS7) enable more accurate flood delineation during the vegetation growing phase.Since Doñana land covers require different observation swaths for flood detection, the composition of different incidence angle images close in time provides the optimum flood mapping. Such composition is possible four times per ASAR 35-day orbit cycle, using pairs of 12-h apart IS1/IS6 and IS2/IS5 Doñana images.  相似文献   

7.
The study of radar backscattering signatures of wheat fields was investigated, using data collected on the Orgeval agricultural watershed (France) by the airborne scatterometer ERASME in C and X bands, HH and VV polarizations, at incidence angles from 15° to 45°, during two years for different soil moisture conditions with simultaneous ground-based measurements. A simple parameterization as water-cloud model with two driving parameters (the surface soil moisture and the plant water content) gives satisfactory results to estimate radar cross sections of wheat for a wide range of frequencies (C and X bands) and incidence angles (20° and 40°) within 1 dB in CHH and XHH and 2 dB in CVV and XVV. At the lower frequency (C band) the attenuated soil backscattering by the vegetation is dominant. It is shown that simple linear relations in C band between radar cross section and soil moisture are insufficient. A correction term for the vegetation attenuation is needed and is determined. Low contrast between the backscattering of dry and wet soil (around 6 dB) for a given vegetation density leads to a relatively high error in the estimation of soil moisture by radar (0.06 cm3 / cm3). At the higher frequency (X band), the radar backscattering is negatively correlated to the vegetation water content with a saturation of the radar cross section as the plant grows (about 6 dB of dynamic range between low and fully grown canopy) with no dependence on the soil signal. The achievable accuracy in the estimation of crop water content is the same at 20° and 40° and higher in XHH (about 0.5 kg/m2) than in XVV.  相似文献   

8.
The objective of this investigation is to analyze the sensitivity of ASAR (Advanced Synthetic Aperture Radar) data to soil surface parameters (surface roughness and soil moisture) over bare fields, at various polarizations (HH, HV, and VV) and incidence angles (20°-43°). The relationships between backscattering coefficients and soil parameters were examined by means of 16 ASAR images and several field campaigns. We have found that HH and HV polarizations are more sensitive than VV polarization to surface roughness. The results also show that the radar signal is more sensitive to surface roughness at high incidence angle (43°). However, the dynamics of the radar signal as a function of soil roughness are weak for root mean square (rms) surface heights between 0.5 cm and 3.56 cm (only 3 dB for HH polarization and 43° incidence angle). The estimation of soil moisture is optimal at low and medium incidence angles (20°-37°). The backscattering coefficient is more sensitive to volumetric soil moisture in HH polarization than in HV polarization. In fact, the results show that the depolarization ratio σHH0HV0 is weakly dependent on the roughness condition, whatever the radar incidence. On the other hand, we observe a linear relationship between the ratio σHH0HV0 and the soil moisture. The backscattering coefficient ratio between a low and a high incidence angle decreases with the rms surface height, and minimizes the effect of the soil moisture.  相似文献   

9.
Two semi-empirical models, simulating the backscattering coefficient from different crops, were tested on the same wheat canopy. The physics of the semi-empirical models and the limitations of these models when scattering effects are discussed. The results show that both models can be included in a generalized formulation adapted to a large range of measurement conditions. This conclusion confirms that the radar configuration (waveband, polarization, incidence angle) plays a role similar to that of the canopy structure in the control of the radar backscattering coefficient.  相似文献   

10.
冬小麦播期的卫星遥感及应用   总被引:8,自引:1,他引:8  
播种日期对冬小麦生长发育、产量和品质形成均有一定的影响。利用2003年拔节期的Landsat TM卫星的NDVI数据.成功地监测了冬小麦的播种日期。提出了基于NDVI和播种日期的冬小麦的遥感估产的优化模型,并在抽穗期至乳熟期的3次生育期的遥感估产中得到了成功验证与应用。利用出粉率与播种日期的显相关特性,采用拔节期的Landsat TM卫星的NDVI数据,成功预测了小麦籽粒的出粉率。  相似文献   

11.
In this paper radar scattering models based on coherent and incoherent formulations for an African grassland (Sahelian) are examined. The coherent model is used to account for the structure of the grass plants and the results are compared with the same model assuming random placement and orientation of scatters, and the radiative transfer model. The validity of the three models applied to grass vegetation is determined by comparing the model predictions with Envisat Advanced Synthetic Aperture Radar (ASAR) data gathered in 2005 over Sahelian grassland. The Agoufou site, as defined in the African Monsoon Multidisciplinary Analysis (AMMA) project, is selected as the test target and a set of ground data was collected during 2004 and 2005. Through a comprehensive data comparison, it is shown that the coherent scattering model with a generator considering botanical information is the best model to predict the backscattering data that matches Envisat measurements well (correlation?=?0.92). At low incidence angles (<30°), the radar backscatter shows a strong dependence on soil moisture variations. The analysis of the different contributions leads to a study of the main scattering mechanisms. For high incidence angles, the backscattering coefficient at HH polarization shows a marked seasonal variation associated with grass presence.  相似文献   

12.
以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。  相似文献   

13.
Based on surface temperature and the normalized difference vegetation index (NDVI), we calculated the temperature vegetation dryness index (TVDI). Using the relationship between TVDI and NDVI, we established a vegetation–soil moisture response model that captures the sensitivity of NDVI's response to changes in TVDI using a linear unmixing approach, and validated the model using Landsat Thematic Mapper (TM) images acquired in 1997, 2004 and 2006 and a Landsat Enhanced Thematic Mapper Plus (ETM+) image acquired in 2000. We determined the correlations between TVDI and field-measured soil moisture in 2006. TVDI was correlated significantly with soil moisture at depths of 0 to 10 cm and 10 to 20 cm, so TVDI can be used as an index that captures changes in soil moisture at these depths. By using fractional vegetation cover (FVC) data measured in the field to validate the estimated values, we estimated mean absolute errors of 0.043 and 0.137 for shrub and grassland vegetation coverage, respectively, demonstrating acceptable estimation accuracy. Based on these results, it is possible to estimate a region's FVC using the linear unmixing model. The results show bare land coverage values distributed similarly to TVDI values. In mountain areas, grassland coverage mostly ranged from 0.4 to 0.6. Shrub coverage mostly ranged from 0.4 to 0.6. Forest coverage was zero in most parts of the study area.  相似文献   

14.
土壤湿度微波遥感中的植被散射模型进展   总被引:9,自引:0,他引:9  
植被是影响土壤湿度微波遥感的主要因子之一,土壤湿度微波遥感的主要任务是建立含有地表土壤信息的植被散射模型。植被散射模型的建立可以加深我们对植被和土壤散射机理的理解,定量分析微波后向散射系数对于各散射因子的敏感性,进一步达到从微波信息中反演土壤湿度的目的。植被散射模型可以分为经验模型、理论模型和半经验模型,各种模型都具有自身的优势和局限性。经验模型的建立比较简单,但一般只适用于特定的研究条件;理论模型是建立在一定的理论基础之上,对于散射因子的考虑相对详尽,但一般模型比较复杂,反演相对困难;半经验模型是前两者的折中,它以植被的宏观物理参量为模型参数,模型的建立和反演比理论模型要简单,但同时也具有一定的理论依据,适用性也较经验模型广。  相似文献   

15.
Soil moisture is an important hydrologic variable of great consequence in both natural and agricultural ecosystems. Unfortunately, it is virtually impossible to accurately assess the spatial and temporal variability of surface soil moisture using conventional, point measurement techniques. Remote sensing has the potential to provide areal estimates of soil moisture at a variety of spatial scales. This investigation evaluates the use of European Remote Sensing Satellite (ERS-2) C-band, VV polarization, synthetic aperture radar (SAR) data for regional estimates of surface soil moisture. Radar data were acquired for three contiguous ERS-2 scenes in the Southern Great Plains (SGP) region of central Oklahoma from June 1999 to October 2000. Twelve test sites (each approximately 800?m×800?m) were sampled during the ERS-2 satellite overpasses in order to monitor changes in soil moisture and vegetation on the ground. An average radar backscattering coefficient was calculated for each test site. Landsat-5 and -7 Thematic Mapper (TM) scenes of the experimental sites close in time to the ERS-2 acquisition dates were also analysed. The TM scenes were used to monitor land cover changes and to calculate the Normalized Difference Vegetation Index (NDVI). Land cover and ground data were used to interpret the radar-derived soil moisture data. Linear relationships between soil moisture and the backscattering coefficient were established. Using these equations, soil moisture maps of the Little Washita and the El Reno test areas were produced.  相似文献   

16.
A method for producing soil moisture maps in mountainous areas by using Environment Satellite Advanced Synthetic Aperture Radar (ENVISAT/ASAR) images at C-band is described in this paper. For this purpose, experimental campaigns were carried out in 2004 in the Cordevole watershed in Italy during ENVISAT passes. Ground truth measurements of soil and vegetation parameters were obtained simultaneously using satellite surveys. A preliminary classification of the area was carried out to mask those zones in which soil moisture measurement was unobtainable. The performance of an inversion algorithm, based on artificial neural networks (ANNs), in retrieving soil moisture content (SMC) from the collected images was then tested and compared with ground measurements. The results obtained on a restricted portion of the watershed show reasonable agreement of backscattering (σ0) with ground truth data and meteorological conditions, thus making it possible to extend the algorithm to the entire test area. The contribution of vegetation cover was then simulated by using a discrete elements model based on radiative transfer theory. Three pixel-by-pixel soil moisture maps of the test site, with four levels of soil moisture, were generated from the available images by using a new ANN that took into account the effects of vegetation.  相似文献   

17.
利用欧洲环境卫星(ENVISAT)搭载的高级合成孔径雷达ASAR(Advanced Synthesis Aperture Radar)交叉极化模式(APP)2009年8月9日和10月6日的数据对青藏高原东北部玛曲地区土壤湿度进行了估算。对于裸土区域采用表层微波后向散射几何光学模型GOM(Geometry Optics Model),对于植被覆盖度大的区域利用“水-云”模型处理植被层对后向散射系数的影响,取得了较好的结果:遥感估算的土壤湿度值和地面实测值之间的均方根误差RMSE<0.05,决定系数R2>0.82,表明该方法适合反演玛曲地区的土壤水分。从遥感估算的总体结果可以看出:山谷和陡峭山坡的反演结果相对较差,而在相对平坦的地区反演结果较好,估算的土壤湿度值在0.20~0.50 m3/m3之间。  相似文献   

18.
Monitoring the characteristics of spatially and temporally distributed soil moisture is important to the study of hydrology and climatology for understanding and calculating the surface water balance. The major difficulties in retrieving soil moisture with Synthetic Aperture Radar (SAR) measurements are due to the effects of surface roughness and vegetation cover. In this study we demonstrate a technique to estimate the relative soil moisture change by using multi‐temporal C band HH polarized Radarsat ScanSAR data. This technique includes two components. The first is to minimize the effects of surface roughness by using two microwave radar measurements with different incidence angles for estimation of the relative soil moisture change defined as the ratio between two soil volumetric moistures. This was done by the development of a semi‐empirical backscattering model using a database that simulated the Advanced Integral Equation Model for a wide range of soil moisture and surface roughness conditions to characterize the surface roughness effects at different incidence angles. The second is to reduce the effects of vegetation cover on radar measurements by using a semi‐empirical vegetation model and the measurements obtained from the optical sensors (Landsat TM and AVHRR). The vegetation correction was performed based on a first‐order semi‐empirical backscattering vegetation model with the vegetation water content information obtained from the optical sensors as the input. For the validation of this newly developed technique, we compared experimental data obtained from the Southern Great Plain Soil Moisture Experiment in 1997 (SGP97) with our estimations. Comparison with the ground soil moisture measurements showed a good agreement for predication of the relative soil moisture change, in terms of ratio, with a Root Mean Square Error (RMSE) of 1.14. The spatially distributed maps of the relative soil moisture change derived from Radarsat data were also compared with those derived from the airborne passive microwave radiometer ESTAR. The maps of the spatial characteristics of the relative soil moisture change showed comparable results.  相似文献   

19.
利用多时相ASAR数据反演黑河流域中游地表土壤水分   总被引:5,自引:1,他引:4       下载免费PDF全文
土壤水分是地表能、水循环过程中的重要变量之一,利用主动微波遥感,特别是合成孔径雷达(SAR)进行土壤水分的反演已经越来越受到人们的关注。地表与微波相互作用机理非常复杂,受到粗糙度的强烈影响,成为制约土壤水分准确反演的一个重要因素。利用3景时序接近的ASAR影像对黑河中游临泽草地试验区地表参数进行了多通道的反演,获得了像元尺度上的粗糙度分布状况,从而不需要借助粗糙度的地面测量辅助信息,节省了工作量。土壤水分反演取得了较为满意的结果(均方根误差< 6%)。   相似文献   

20.
Abstract

Most attempts at predicting soil moisture from C-band microwave backscattering coefficients for bare soil are made by fitting experimental calibration relations obtained for limited ranges of incidence angle and soil surface roughness. In this paper, a more general approach is discussed using an inversion procedure to extend the use of a single experimental calibration relation to a wider range of incidence angle and surface roughness. A correcting function is proposed to normalize the backscattering coefficients to the conditions (incidence angle and surface roughness) of the calibration relation. This correcting function was derived from simulated data using the physical optics or KirchhofTs scatter model using the scalar approximation. Before discussing the inversion procedure, the backscattering coefficients calculated by the model have been compared with experimental data measured in the C-band, HH polarization and three incidence angles (Θ= 15°, 23°, 50°) under a wide range of surface soil moisture conditions (0.02Hv  0.35cm3 cm-3) and for a single quite smooth soil surface roughness (0–011 s  OOI4/n)m. The model was found to be experimentally validated from 15° to 23° of incidence and for surface soil moistures higher than 0-I0cm3cm-3. For the inversion procedure, it is assumed to have a wider range of validity (15°  Θ 35° ) for ihc incidence angle. A sensitivity analysis of the model to errors on roughness parameter and incidence angle was performed in order to assess the feasability and suitability of the described inversion procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号