首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Due to the information gap between the VEGETATION sensors and Sentinel-3 mission, the Belgian state decided to build a small satellite, Project for Onboard Autonomy-Vegetation (PROBA-V), to ensure the continuity of the data record for vegetation studies. In this study, simulated PROBA-V data generated by the Landsat Thematic Mapper (TM) were used to evaluate the potential of this mission to assess winter wheat status. The root mean square error (RMSE) of PROBA-V's leaf area index (LAI), which was generated using the exponential method and the interpolation method, is 0.33 and 0.96 for March 2011 and 1.40 and 3.33 for May 2011, respectively. Système Pour l'Observation de la Terre (SPOT) VEGETATION's LAI does not show a significant relationship with the reference LAI values except for the LAI values during the stem elongation 100% phenological stage generated using the exponential method (correlation coefficient, r = 0.91; = 0.01). For the tillering and stem elongation 100% phenological stages, linear regression models for the fraction of absorbed photosynthetically active radiation (FAPAR) with PROBA-V's normalized difference vegetation index (NDVI) were developed (coefficient of determination, R 2, of 0.94 and 0.88). Exponential models for LAI (R 2 of 0.91 and 0.93) and fresh weight of above-ground biomass (AGBf) (R 2 of 0.90 and 0.93) with PROBA-V's near-infrared (NIR) and visible and near-infrared bands (VNIR B2) were developed accordingly. The assessment of winter wheat status showed that the highest and the lowest values of PROBA-V's simulated data (SD), i.e. NDVI, normalized difference water index (NDWI), and LAI of Field 2 and Field 4, correspond to the ground-measured biometric parameters.  相似文献   

2.
Leaf area index (LAI) is an important structural parameter in terrestrial ecosystem modelling and management. Therefore, it is necessary to conduct an investigation on using moderate-resolution satellite imagery to estimate and map LAI in mixed natural forests in southeastern USA. In this study, along with ground-measured LAI and Landsat TM imagery, the potential of Landsat 5 TM data for estimating LAI in a mixed natural forest ecosystem in southeastern USA was investigated and a modelling method for mapping LAI in a flooding season was developed. To do so, first, 70 ground-based LAI measurements were collected on 8 April 2008 and again on 1 August 2008 and 30 July 2009; TM data were calibrated to ground surface reflectance. Then univariate correlation and multivariate regression analyses were conducted between the LAI measurement and 13 spectral variables, including seven spectral vegetation indices (VIs) and six single TM bands. Finally, April 08 and August 08 LAI maps were made by using TM image data, a multivariate regression model and relationships between April 08 and August 08 LAI measurements. The experimental results indicate that Landsat TM imagery could be used for mapping LAI in a mixed natural forest ecosystem in southeastern USA. Furthermore, TM4 and TM3 single bands (R 2 > 0.45) and the soil adjusted vegetation index, transformed soil adjusted vegetation index and non-linear vegetation index (R 2 > 0.64) have produced the highest and second highest correlation with ground-measured LAI. A better modelling result (R 2?=?0.78, accuracy?=?73%, root mean square error (RMSE)?=?0.66) of the 10-predictor multiple regression model was obtained for estimating and mapping April 08 LAI from TM data. With a linear model and a power model, August 08 LAI maps were successfully produced from the April 08 LAI map (accuracy?=?79%, RMSE?=?0.57), although only 58–65% of total variance could be accounted for by the linear and non-linear models.  相似文献   

3.
In this article, the Kuusk–Nilson forest reflectance and transmittance (FRT) model was inverted to retrieve the overstorey and understorey leaf area index (OU-LAI) of forest stands in the Longmenhe forest nature reserve in China. Data from detailed sample sites were collected in 30 forest stands representing the typical vegetation community in the study area. An uncertainty and sensitivity matrix (USM) was used to analyse the sensitivity of the FRT model parameters based on these data. The results indicated that overstorey LAI strongly influenced stand reflectance, whereas understorey LAI had a much lower impact. To predict OU-LAI in forest stands, FRT model inversion is carried out by minimizing a merit function that provides a measure of the difference between the reflectance simulated by the FRT model and the reflectance originating from optimal band selection of Hyperion data. Various combinations of Hyperion bands were tested to evaluate the most effective wavelengths for the inversion of OU-LAI. The best estimates from 17 Hyperion bands (5 VIS, 8 NIR, 4 SWIR) by the FRT model inversion showed an R 2?=?0.41 and RMSE/mean?=?0.21 for overstorey LAI and R 2?=?0.49 and RMSE/mean?=?0.91 for understorey LAI. Advantages and disadvantages of FRT inversion for retrieval OU-LAI combined with Hyperion data are discussed.  相似文献   

4.
Leaf area index (LAI) is among the vegetation parameters that play an important role in climate, hydrological and ecological studies, and is used for assessing growth and expansion of vegetation. The main objective of this study was to develop a methodology to map the LAI distribution of birch trees (Betula pendula) in peatland ecosystems using field-based instruments and airborne-based remote-sensing techniques. The developed mapping method was validated using field-based LAI measurements using the LAI-2000 instrument. First vegetation indices, including simple ratio (SR), normalized difference vegetation index (NDVI), and reduced simple ratio (RSR), were derived from HyMap data and related to ground-based measurements of LAI. LAI related better with RSR (R2 = 0.68), followed by NDVI (R2 = 0.63) and SR (R2 = 0.58), respectively. Areas with birch were identified using Spectral Angle Mapper (SAM) to classify the image into 11 end members of dominant species including bare soil and open water. Next, the relationship between LAI and RSR was applied to areas with birch, yielding a birch LAI map. Comparison of the map of the birch trees and field-based LAI data was done using linear regression, yielding an R2 = 0.38 and an RMSE = 0.25, which is fairly accurate for a structurally highly diverse field situation. The method may prove an invaluable tool to monitor tree encroachment and assess tree LAI in these remote and poorly accessible areas.  相似文献   

5.
Leaf Area Index (LAI) is an important biophysical parameter necessary to infer vegetation vigour, seasonal vegetation variability and different physiological and biochemical processes of vegetation. Gap fraction analysis has been carried out to estimate plot‐wise LAI. Tropical dry deciduous forests of the study area can be categorized into two prominent phases—growing and senescent phases. Efforts have been made to observe the relationship between ground based LAI values and satellite derived parameters, such as radiance values and also different vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), maximum, minimum, amplitude, sum and radiance NDVI values for both the phases. Multi‐temporal IRS 1C WiFS data have been used. WiFS provides information in two bands: red (0.62–0.68 µm) and near‐infrared (0.77–0.86 µm). All the images from the representative months have been corrected radiometrically and geometrically. NDVI values have been derived for all the representative months. Among various parameters maximum NDVI values showed better relationships with LAI for both the phases. For the growing phase R 2 (coefficient of determination) was 0.79, whereas for the senescent phase it was 0.48. These empirical relationships have been used to estimate LAI at a regional level. The LAI estimate for growing and senescent phases ranged from <1 to 4.25.  相似文献   

6.
Monitoring of crop growth and forecasting its yield well before harvest is very important for crop and food management. Remote sensing images are capable of identifying crop health, as well as predicting its yield. Vegetation indices (VIs), such as the normalized difference vegetation index (NDVI), leaf area index (LAI) and fraction of photosynthetically active radiation (fPAR) calculated from remotely sensed data have been widely used to monitor crop growth and to predict crop yield. This study used 8 day TERRA MODIS reflectance data of 500 m resolution for the years 2005 to 2006 to estimate the yield of potato in the Munshiganj area of Bangladesh. The satellite data has been validated using ground truth data from fields of 50 farmers. Regression models are developed between VIs and field level potato yield for six administrative units of Munshiganj District. The yield prediction equations have high coefficients of correlation (R 2) and are 0.84, 0.72 and 0.80 for the NDVI, LAI and fPAR, respectively. These equations were validated by using data from 2006 to 2007 seasons and found that an average error of estimation is about 15% for the study region. It can be concluded that VIs derived from remote sensing can be an effective tool for early estimation of potato yield.  相似文献   

7.
Leaf area index (LAI) is a key parameter of atmosphere–vegetation exchanges, affecting the net ecosystem exchange and the productivity. At regional or continental scales, LAI can be estimated by remotely‐sensed spectral vegetation indices (SVI). Nevertheless, relationships between LAI and SVI show saturation for LAI values greater than 3–5. This is one of the principal limitations of remote sensing of LAI in forest canopies. In this article, a new approach is developed to determine LAI from the spatial variability of radiometric data. To test this method, in situ measurements for LAI of 40 stands, with three dominant species (European beech, oak and Scots pine) were available over 5 years in the Fontainebleau forest near Paris. If all years and all species are pooled, a good linear relationship without saturation is founded between average stand LAI measurements and a model combining the logarithm of the standard deviation and the skewness of the normalized difference vegetation index (NDVI) (R 2 = 0.73 rmse = 1.08). We demonstrate that this relation can be slightly improved by using different linear models for each year and each species (R 2 = 0.82 rmse = 0.86), but the standard deviation is less sensitive to the species and the year effects than the mean NDVI and is therefore a performing index.  相似文献   

8.
The leaf area index (LAI) is the key biophysical indicator used to assess the condition of rangeland. In this study, we investigated the implications of narrow spectral response, high radiometric resolution (12 bits), and higher signal-to-noise ratio of the Landsat 8 Operational Land Imager (OLI) sensor for the estimation of LAI. The Landsat 8 LAI estimates were compared to that of its predecessors, namely Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (8 bits). Furthermore, we compared the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher for Landsat 8 OLI, where ANN (root mean squared error, RMSE = 0. 13; R2 = 0. 89), LUT (RMSE = 0. 25; R2 = 0. 50), compared to Landsat 7 ETM+, where ANN (RMSE = 0. 35; R2 = 0. 60), LUT (RMSE = 0. 38; R2 = 0. 50). Compared to an empirical approach, the RTM provided higher accuracy. In conclusion, Landsat 8 OLI provides an improvement for the estimation of LAI over Landsat 7 ETM+. This is useful for rangeland monitoring.  相似文献   

9.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

10.
This letter deals with estimation of LAI for a wheat crop using physical and semi‐empirical BRDF models and IRS‐1D LISS‐III sensor data. NDVI was computed for both the models with LAI as a free parameter. The model‐computed NDVI was compared with corresponding atmospherically corrected LISS‐III NDVI. The estimation of LAI was carried out on the basis of a look‐up table approach and minimum root mean squared deviation between model computed and observed NDVI. The estimated LAI was validated against field measurements carried out during the months of February and March 2003, at the Central State Farm, Rajasthan, India. It was found that LAI was underestimated in both physical and semi‐empirical models. Results show that inclusion of multiple scattering in physical models may not always lead to a more accurate estimation of LAI and that it may be possible to estimate LAI at early stages of crop growth using semi‐empirical models. The coefficient of determination (R 2) between model estimated and measured LAI was 0.57 (standard error of estimate (SE) 0.156) and 0.63 (SE 0.187) for semi‐empirical and physical models, respectively, in the single scattering approximation, for February data. The corresponding values for March data were 0.57 (SE 0.206) and 0.51 (SE 0.216), respectively.  相似文献   

11.
The aim of this study was to compare the performance of various narrowband vegetation indices in estimating Leaf Area Index (LAI) of structurally different plant species having different soil backgrounds and leaf optical properties. The study uses a dataset collected during a controlled laboratory experiment. Leaf area indices were destructively acquired for four species with different leaf size and shape. Six widely used vegetation indices were investigated. Narrowband vegetation indices involved all possible two band combinations which were used for calculating RVI, NDVI, PVI, TSAVI and SAVI2. The red edge inflection point (REIP) was computed using three different techniques. Linear regression models as well as an exponential model were used to establish relationships. REIP determined using any of the three methods was generally not sensitive to variations in LAI (R 2 < 0.1). However, LAI was estimated with reasonable accuracy from red/near-infrared based narrowband indices. We observed a significant relationship between LAI and SAVI2 (R 2 = 0.77, RMSE = 0.59 (cross validated)). Our results confirmed that bands from the SWIR region contain relevant information for LAI estimation. The study verified that within the range of LAI studied (0.3 ≤ LAI ≤ 6.1), linear relationships exist between LAI and the selected narrowband indices.  相似文献   

12.
The aim of this paper was to serve as a pilot study for running a physically based forest reflectance model through an operational forest management data base in Finnish coniferous forests. The LAI values of 250 boreal coniferous stands were retrieved with the physically based model by inversion from a SPOT HRVIR1 image. The use of three spectral vegetation indices (NDVI, RSR and MSI) in LAI estimation was tested for the same stands. Ground-truth LAI was based on an allometric model which can be applied to routine stand inventory data. Stand reflectances were computed as an average of reflectances of the pixels located within the digital stand borders.The relationships of LAI and spectral vegetation indices calculated from the SPOT data were very scattered. RSR exhibited the widest range of values (and the highest correlation with LAI), suggesting it to be more dynamic than MSI or NDVI. Inversion of the reflectance model was done twice: first using as simultaneous input three wavelength bands (red, NIR and MIR), then only the red and NIR bands. The aim was to observe whether including the MIR band in the inversion would improve the inverted LAI estimates or if using only the red and NIR bands would result in the same reliability of inverted values. The motivation for examining the influence of the MIR band resulted from several recent studies from the boreal zone which suggest that the pronounced understory effect could be minimized by the inclusion of the MIR band. The LAI values inverted by the model were slightly larger than the ground-truth LAI values. A minor improvement in LAI estimates was observed after the inclusion of the MIR band in reflectance model inversion. The errors in the ground-truth LAI were uncertain and the background understory reflectance was expected to be highly variable. Thus, the quality of the data used may be to a large extent responsible for the observed low utility of the tested channels.  相似文献   

13.
ABSTRACT

The potential of Sentinel-2 (S2) data in mapping Leaf area index (LAI) of mangroves having heterogeneous species composition, variable canopy density, and complex backgrounds was studied. Out of the three available near-infrared bands in S2, band-8 of 10 m spatial resolution was found to be the most suitable one for deriving the Normalized Difference Vegetation Index (NDVI) for mangroves. The LAI-NDVI relation did not accord apparently with the earlier reports and the underlying complex background effect was validated with Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) hyperspectral data. It simulated spectral and spatial conditions of S2 by linear mixing of canopy and background that confirmed the effect of background contributions to the canopy reflectance decorrelating the NDVI from LAI. The compensation for diverse backgrounds was accomplished with optimum-scaled NDVI (scNDVIm) obtained from the mean of scaled NDVIs derived with different backgrounds in the mangroves. LAI was well correlated with composite NDVI (NDVIcom), derived empirically from the most appropriate NDVI (NDVIS2) and scNDVIm where ground observation controlled the threshold arbitration in extracting the range of scNDVIm. It was shown that an improved LAI estimate with a coefficient of determination (R2) of 0.69 and root-mean-square error (RMSE) of 0.02 could be obtained with NDVIcom. This method has the advantage of compensating the contaminations due to background reflectance. While the relation between LAI and NDVIcom was found to be consistent, the application of the same methodology in similar mangroves should be site-specific with ample ground observation. The fusion of NDVI and scNDVI obtained from S2 yields better LAI retrieval for mixed mangroves, such as that of Sundarban.  相似文献   

14.
This paper reports on the use of linear spectral mixture analysis for the retrieval of canopy leaf area index (LAI) in three flux tower sites in the Boreal Ecosystem-Atmosphere Study (BOREAS) southern study area: Old Black Spruce, Old Jack Pine, and Young Jack Pine (SOBS, SOJP, and SYJP). The data used were obtained by the Compact Airborne Spectrographic Imager (CASI) with a spatial resolution of 2 m in the winter of 1994. The convex geometry method was used to select the endmembers: sunlit crown, sunlit snow, and shadow. Along transects for these flux tower sites, the fraction of sunlit snow was found to have a higher correlation with the field-measured canopy LAI than the fraction of sunlit crown or the fraction of shadow. An empirical equation was obtained to describe the relation between canopy LAI and the fraction of sunlit snow. There is a strong correlation between the estimated LAI and the field-measured LAI along transects (with R2 values of 0.54, 0.71, and 0.60 obtained for the SOBS, SYJP, and SOJP sites, respectively). The estimated LAI for the whole tower site is consistent with that obtained by the inversion of a canopy model in our previous study where values of 0.94, 0.92, and 0.63 were obtained for R2 for the SOBS, SYJP and SOJP sites, respectively.The CASI 2-m summer data over the SOBS site was also employed to investigate the possibility of deriving canopy LAI from the summer data using linear mixture analysis. At a spatial resolution of 10 m, the correlation between the field-measured LAI and the estimated LAI along transects is small at R2 less than 0.3, while R2 increases to 0.6 at a spatial resolution of 30 m. The difficulty in canopy LAI retrieval from the summer data at a spatial resolution of 10 m is likely due to the variation of the understory reflectance across the scene, although spatial misregistration of the CASI data used may also be a possible contributing factor.  相似文献   

15.
On the relationship of NDVI with leaf area index in a deciduous forest site   总被引:7,自引:0,他引:7  
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships.  相似文献   

16.
Leaf area index (LAI) is one of the most important parameters for determining grassland canopy conditions. LAI controls numerous biological and physical processes in grassland ecosystems. Remote-sensing techniques are effective for estimating grassland LAI at a regional scale. Comparison of LAI inversion methods based on remote sensing is significant for accurate estimation of LAI in particular areas. In this study, we developed and compared two inversion models to estimate the LAI of a temperate meadow steppe in Hulunbuir, Inner Mongolia, China, based on HJ-1 satellite data and field-measured LAI data. LAI was measured from early June to late August in 2013, obtained from 326 sampling data. The back propagation (BP) neural network method proved better than the statistical regression model for estimating grassland LAI, the accuracy of the former being 82.8%. We then explored the spatio-temporal distribution in LAI of Stipa baicalensis Roshev. in the meadow steppe of Hulunbuir, including cut, grazed, and fenced plots. The LAI in the cut and grazed plots reflected the growth variations in S. baicalensis Roshev. However, because of the obvious litter layer, the LAI in the fenced plots was underestimated.  相似文献   

17.
Leaf area index (LAI) has been associated with vegetation productivity and evapotranspiration in mathematical models. At a regional level LAI can be estimated with enough accuracy through spectral vegetation indices (SVIs), derived from remote sensing imagery. However, there are few studies showing LAI–SVI relationships in subtropical regions. The aim of this work was to examine the relationship between LAI and SVIs in a subtropical rural watershed (in Piracicaba, State of Sa?o Paulo, Brazil), for different land covers, and to use the best relationship to generate a LAI map for the watershed. LAI was measured with a LAI-2000 instrument in 32 plots on the field in areas of sugar cane, pasture, corn, eucalypt, and riparian forest. The SVIs studied were Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI), calculated from Landsat-7 ETM+ data. The results showed LAI values ranging from 0.47 to 4.48. LAI–SVI relationships were similar for all vegetation types, and the potential model gave the best fit. It was observed that LAI–NDVI correlation (r 2=0.72) was not statistically different from LAI–SR correlation (r 2=0.70). The worst correlation was obtained by LAI–SAVI (r 2=0.56). A map was generated for the study area using the LAI–NDVI relationship. This was the first LAI map for the region.  相似文献   

18.
We evaluate the potential of deriving fractional cover (fCover) and leaf area index (LAI) from discrete return, small footprint airborne laser scanning (ALS) data. fCover was computed as the fraction of laser vegetation hits over the number of total laser echoes per unit area. Analogous to the concept of contact frequency, an effective LAI proxy was estimated by a fraction of first and last echo types inside the canopy. Validation was carried out using 83 hemispherical photographs georeferenced to centimeter accuracy by differential GPS, for which the respective gap fractions were computed over a range of zenith angles using the Gap Light Analyzer (GLA). LAI was computed by GLA from gap fraction estimations at zenith angles of 0-60°. For ALS data, different data trap sizes were used to compute fCover and LAI proxy, the range of radii was 2-25 m. For fCover, a data trap size of 2 m radius was used, whereas for LAI a radius of 15 m provided best results. fCover was estimated both from first and last echo data, with first echo data overestimating field fCover and last echo data underestimating field fCover. A multiple regression of fCover derived from both echo types with field fCover showed no increase of R2 compared to the regression of first echo data, and thus, we only used first echo data for fCover estimation. R2 for the fCover regression was 0.73, with an RMSE of 0.18. For the ALS LAI proxy, R2 was lower, at 0.69, while the RMSE was 0.01. For LAI larger radii (∼ 15 m ) provided best results for our canopy types, which is due to the importance of a larger range of zenith angles (0-60°) in LAI estimation from hemispherical photographs. Based on the regression results, maps of fCover and LAI were computed for our study area and compared qualitatively to equivalent maps based on imaging spectrometry, revealing similar spatial patterns and ranges of values.  相似文献   

19.
Leaf area index (LAI) is an important structural property of vegetation canopy and is also one of the basic quantities driving the algorithms used in regional and global biogeochemical, ecological and meteorological applications. LAI can be estimated from remotely sensed data through the vegetation indices (VI) and the inversion of a canopy radiative transfer (RT) model. In recent years, applications of the genetic algorithms (GA) to a variety of optimization problems in remote sensing have been successfully demonstrated. In this study, we estimated LAI by integrating a canopy RT model and the GA optimization technique. This method was used to retrieve LAI from field measured reflectance as well as from atmospherically corrected Landsat ETM+ data. Four different ETM+ band combinations were tested to evaluate their effectiveness. The impacts of using the number of the genes were also examined. The results were very promising compared with field measured LAI data, and the best results were obtained with three genes in which the R2 is 0.776 and the root-mean-square error (RMSE) 1.064.  相似文献   

20.
We examined the relationship between the spatio-temporal distribution of leaf litter for each species and the seasonal patterns of in situ and satellite-observed daily vegetation indices in a cool-temperate deciduous broad-leaved forest. The timing and distribution of leaf-fall revealed spatio-temporal relationships with species and topography. Values of the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and green–red vegetation index (GRVI), measured both in situ and by satellite, and those of the in situ-measured leaf area index (LAI), rapidly declined at the peak of leaf-fall. At the late stage of leaf-fall, in situ-measured values of NDVI, EVI, and LAI declined but those of GRVI changed from decreasing to increasing. The peak timing of leaf-fall, when 50–73% of the leaf litter had fallen, corresponds to LAI = 1.80–0.81, NDVI = 0.61–0.54, EVI = 0.29–0.25, and GRVI = 0.01 ~ ?0.07. Although the distribution of leaf litter among species displayed spatial characteristics at the peak of leaf-fall, spatial heterogeneity of amount of leaf litter at the peak timing of leaf-fall was less than that at the beginning and end. These facts suggest that the criterion for determining the timing of leaf-fall from vegetation indices should be a value corresponding to the peak of leaf-fall rather than its end. In a high-biodiversity forest, such as this study forest, the effect of spatial heterogeneity on the timing and patterns of leaf-fall on vegetation indices can be reduced by observing only the seasonal variation in colour on the canopy surface by using GRVI, which consists of visible reflectance bands, rather than that of both leaf area and colour of the canopy surface by using NDVI and EVI, which consist of visible and near-infrared reflectance bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号