首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flexion–relaxation phenomenon (FRP) in back muscles is related to the lower back load. Although the FRP has been widely discussed, the effect of wearing jeans—a common attire in workplaces—on the FRP is unexplored. This study recruited 20 male participants with high and low flexibilities (10 each) and measured the related muscle activity and lumbopelvic movement at five trunk flexion angles (0°–90°) when wearing two types of bottom wears (swim trunks and fit jeans). Results revealed that the bottom wear type and trunk angle significantly affected all responses, whereas flexibility affected only erector spinae and hamstring activities. Participants with high flexibility and wearing swim trunks exhibited greater erector spinae activity than did those with low flexibility and wearing jeans. Thus, those who have low flexibility or are wearing jeans are likely to experience more activity reductions in erector spinae. However, the result with hamstring activity was the opposite. Wearing jeans limited participants’ pelvic rotation, forcing them to bend their lumbar spine further to complete trunk flexion, thus reducing erector spinae activity. A looser attire should be chosen to avoid constraining the pelvic rotation when work involves a deep trunk flexion.Relevance to industryPeople wearing jeans have limited pelvic movement and decreased erector spinae activity during deep trunk flexion, and this may further strain their interspinous ligaments. Thus, people should not wear fit jeans when in workplaces where their work involves stooping or trunk flexion exceeding 45° to minimize the load on their lower back.  相似文献   

2.
《Ergonomics》2012,55(8):1295-1303
Lifting tasks performed on uneven ground surfaces are common in outdoor industries. Previous studies have demonstrated that lifting tasks performed on laterally slanted ground surfaces influence lumbar muscle activation and trunk kinematics. In this study, the effect of laterally slanted ground surfaces on the lumbar muscle flexion–relaxation responses was investigated. Fourteen participants performed sagittal plane, trunk flexion–extension tasks on three laterally slanted ground surfaces (0° (flat ground), 15° and 30°), while lumbar muscle activities and trunk kinematics were recorded. Results showed that flexion–relaxation occurred up to 6.2° earlier among ipsilateral lumbar muscles with an increase in laterally slanted ground angle; however, the contralateral side was not affected as much. Our findings suggest that uneven ground alters the lumbar tissue load-sharing mechanism and creates unbalanced lumbar muscle activity, which may increase the risk of low back pain with repeated exposure to lifting on variable surfaces.

Practitioner Summary: Uneven ground surfaces are ubiquitous in agriculture, construction, fishing and other outdoor industries. A better understanding of the effects of laterally slanted ground surfaces on the interaction between passive and active lumbar tissues during lifting tasks could provide valuable knowledge in the design of preventive strategies for low back injuries.  相似文献   

3.
Although numerous studies have documented back muscle flexion-relaxation phenomenon (FRP) in standing postures, few studies have examined the FRP in various seated lumbar postures and individual flexibilities. This study, therefore, recruited 18 male students and assigned to low- and high-flexibility groups (9 in each). Activation of thoracic and lumbar erector spinae (ES) and lumbosacral angles were examined while participants sat in two postures (lordosis and kyphosis) and flexed their trunks at 15°, 30°, 45°, 60°, and maximum flexion. Results showed that kyphotic lumbar posture caused relatively low and unchangeable thoracic and lumbar ES activations, whereas lordotic lumbar posture engendered more contractive and varying thoracic and lumbar ES activations. Flexible participants exhibited higher thoracic ES activation than less flexible participants during lordotic sitting. Thoracic ES seemed to play a compensative role to stabilize the spine in the lordotic sitting posture, especially when the trunk was flexed over 45°. In lordotic lumbar posture, FRP occurred only in the lumbar ES; however, the activation and lumbosacral angles were still higher than those in kyphotic posture. The increased back muscle activation associated with lumbar lordosis may partially share the load on passive interspinous tissues, which are close to the discs during these flexed trunk positions.Relevance to industryThis study suggests that various lumbar postures and individual flexibilities may cause different FRP patterns when sitting. While performing seated tasks, people should exercise caution about the lumbar posture.  相似文献   

4.
Our companion paper demonstrated the importance of a systems-level perspective on spine biomechanics by showing the effects of lower extremity constraints during simple, trunk flexion-extension motions. This paper explores the impact of trunk muscle fatigue and stress-relaxation of lumbar passive tissues on this systems-level response. Twelve participants performed experimental protocols to achieve lumbar passive tissue stress-relaxation fatigue and lumbar muscle fatigue. Participants performed full range of sagittal-plane trunk flexion-extension under unconstrained stoop movement and pelvic/lower extremity constrained stoop movement. They performed these motions both before and after the fatigue protocols and trunk kinematics and muscle activities in trunk and lower extremity muscles were monitored. Under the condition of passive tissue fatigue, low back muscles and lower extremity muscles revealed significantly increased activation level (21% and 22%, respectively) in the free stoop condition but under the restricted stoop condition, there was no significant effect of the protocol. Under the lumbar muscle fatigue condition, a significant antagonistic and lower extremity activation effect (34% increase in abdominal muscles, 16% increase in lower extremity muscles) was observed in the free stooping condition while these variables were not affected by the protocol under the restricted stooping condition.Relevance to industryFatigue of the lumbar musculature and passive tissues is prevalent in jobs requiring full trunk flexion postures. Developing accurate biomechanical models of spinal stress in these full stooping postures can help in the development of appropriate interventions to reduce the prevalence of back injuries in these jobs.  相似文献   

5.
Repetitive flexion of the lumbar spine during labour may have an impact on the development of low back pain, but current evidence is sparse. This study focuses on the effect of palletising on the lumbar spine's passive mechanics (flexion characteristics). As other passive structures begin to creep from long-term loading, changes in lumbar passive flexion characteristics have been hypothesised. The lumbar spine's passive flexion characteristics were investigated in 22 volunteers before and after palletising. For comparison, measurements were performed also during relaxed upright standing and while palletising with breaks for exercise. Measurement of passive flexion characteristics was done by a custom-made machine, and posture of the lumbar spine was captured by a kinematographic device. The torque acting within the body on lumbar level L4/5 was analysed. To exclude active forces by lumbar muscles during measurements, lumbar muscle activation was monitored by surface electromyography. Lumbar spine passive stiffness increased significantly (almost 50%) due to palletising. After relaxed standing and palletising with exercise breaks, this change could not be generally verified. The increased stiffness of passive structures of the lumbar spine provoked by palletising over half an hour suggests a degree of tissue fatigue. Even though it is unclear which passive structures change their passive mechanics and how this happens, this highlights the importance of break management during repetitive flexion of the lumbar spine.  相似文献   

6.
Gender differences in lumbar and pelvic posture have been reported previously in prolonged sitting, both in an office chair and automobile seat. To date, it is not known whether these postural exposures during prolonged driving affect the passive lumbar spine flexion stiffness. The purpose of this study was to examine time-varying responses of passive lumbar spine stiffness, lumbar spine and pelvic postures during a 2 h simulated driving trial. Secondary goals investigated the influence of gender on lumbar spine stiffness, discomfort scores and seat pressure profiles. Twenty (10 males, 10 females) subjects were recruited to complete a 2 h simulated driving task. Passive lumbar range of motion was measured on a customized frictionless jig before, halfway through and at the end of 2 h. During driving there was a time-varying difference in the lumbar flexion angles adopted by the gender groups. A significant interaction (p = 0.0458) was found for gender and time with women being found to sit significantly different than males in the second hour of driving exhibiting greater maximum lumbar flexion (60.0% ROM (±1.27) than men 50.0% ROM (±1.5). Both men and women demonstrated similar passive stiffness changes characterized by an initial increase in transitional zone stiffness after 1 h (+0.1 Nm/degree for males and +0.3 Nm/degree for females, p = 0.2372). Over 2 h of driving there was a non-significant trend of genders to respond differently to the seated exposure. Specifically transitional zone stiffness was found to increase in males (0.86 (SD 0.31) to 0.92 (SD 0.31) Nm/degree) and decrease in females (0.81 (SD0.88) to 0.73 (SD 0.52) Nm/degree) (p = 0.1178). Differences in lumbar posture and passive stiffness over 2 h of simulated driving were demonstrated between genders in this study.Relevance to industryGender specific ergonomic interventions should be investigated for the automobile seat. Additionally, the changes in passive stiffness induced by prolonged seated exposures could introduce altered low back kinematics in activities performed after a long car ride. Lifting scenarios such as luggage unloading or parcel delivery are common activities immediately after driving. The altered stiffness of the lumbar spine in these activities could have potential ergonomics and injury related implications for both the general population and professional drivers.  相似文献   

7.
Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (?15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed.

Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.  相似文献   


8.
《Applied ergonomics》2014,45(2):278-284
Awkward back and shoulder postures have been suggested to be a cause of back and shoulder discomfort in carpet weavers. This study aimed at continuous assessment of the upper arm and back postures and estimation of biomechanical load subtasks using inclinometers during 4 h.Median of trunk flexion angle in weavers was 18° and 13° during knotting and compacting subtasks, respectively. The weavers worked with arms elevated greater than 45° for %4.5 of the work time. The average cumulative compression load for males and females were estimated at 22 MN-S and 13 MN-S, respectively.In addition to poor workstation design, constrained posture of the trunk and low elevation and velocity for both arms may be the main risk factors for developing fatigue and disorders in the back and shoulder regions among carpet weavers. Therefore, any ergonomic interventions should be focused on reducing trunk flexion and the constrained postures of weavers.  相似文献   

9.
《Ergonomics》2012,55(5):653-668
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60°asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7°), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2°s-1). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion.  相似文献   

10.
《Ergonomics》2012,55(3):219-233
A laboratory study was conducted to determine the effects of back disability status on endurance time and perceived discomfort during trunk flexion. Eighty participants (40 with chronic or recurrent low back pain (CRLBP), 40 pain-free) were tested. The trunk was flexed to 15°, 30°, 45° and 60° under three conditions: 1) continuous static flexion; 2) cyclical flexion with 20% rest; and 3) cyclical flexion with 40% rest. Each condition was performed for up to 600?s or until the participant reached his/her pain tolerance limit. Dependent variables included time to distracting discomfort (TDD), total endurance time (TET) and perceived discomfort. For continuous exertions, CRLBP participants had lower TDD (p?<?0.001), lower TET (p?<?0.001) and greater discomfort (p?<?0.001) compared to pain-free controls. In both groups, TDD and TET decreased and perceived discomfort increased as the flexion angle increased. For intermittent exertions, CRLBP participants reported greater discomfort than pain-free participants (p?<?0.001). Increasing rest from 20 to 40% reduced discomfort in CRLBP participants, but produced no consistent benefit in pain-free participants. To accommodate persons with CRLBP, consideration should be given to reducing both the magnitude (angle) and duration of trunk flexion required by their jobs.  相似文献   

11.
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60 degrees asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7 degrees), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2 degrees s(-1)). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion.  相似文献   

12.
《Ergonomics》2012,55(6):954-963
Repetitive lifting is associated with an increased risk of occupational low back disorders, yet potential adverse effects of such exposure on trunk mechanical and neuromuscular behaviours were not well described. Here, 12 participants, gender balanced, completed 40 min of repetitive lifting in all combinations of three flexion angles (33, 66, and 100% of each participant's full flexion angle) and two lift rates (2 and 4 lifts/min). Trunk behaviours were obtained pre- and post-exposure and during recovery using sudden perturbations. Intrinsic trunk stiffness and reflexive responses were compromised after lifting exposures, with larger decreases in stiffness and reflexive force caused by larger flexion angles, which also delayed reflexive responses.Consistent effects of lift rate were not found. Except for reflex delay no measures returned to pre-exposure values after 20 min of recovery. Simultaneous changes in both trunk stiffness and neuromuscular behaviours may impose an increased risk of trunk instability and low back injury.

Practitioner summary An elevated risk of low back disorders is attributed to repetitive lifting. Here, the effects of flexion angle and lift rate on trunk mechanical and neuromuscular behaviours were investigated. Increasing flexion angle had adverse effects on these outcomes, although lift rate had inconsistent effects and recovery time was more than 20 min.  相似文献   

13.
《Ergonomics》2012,55(12):1586-1595
Low back pain (LBP) is a common musculoskeletal disorder and prolonged sitting often aggravates LBP. A novel dynamic ergonomic chair (‘Back App’), which facilitates less hip flexion while sitting on an unstable base has been developed. This study compared lumbar posture and trunk muscle activation on this novel chair with a standard backless office chair. Twelve painfree participants completed a typing task on both chairs. Lumbar posture and trunk muscle activation were collected simultaneously and were analysed using paired t-tests. Sitting on the novel dynamic chair significantly (p < 0.05) reduced both lumbar flexion and the activation of one back muscle (Iliocostalis Lumborum pars Thoracis). The discomfort experienced was mild and was similar (p > 0.05) between chairs. Maintaining lordosis with less muscle activation during prolonged sitting could reduce the fatigue associated with upright sitting postures. Studies with longer sitting durations, and in people with LBP, are required.

Practitioner Summary: Sitting on a novel dynamic chair resulted in less lumbar flexion and less back muscle activation than sitting on a standard backless office chair during a typing task among pain-free participants. Facilitating lordotic sitting with less muscle activation may reduce the fatigue and discomfort often associated with lordotic sitting postures.  相似文献   

14.
We investigated the effect of an alternative welding system designed to reduce exposure to extreme trunk flexion on measures of trunk inclination and muscle activity. Among 10 participants, data were collected while using conventional stud welding equipment and while using the alternate system. Paired t-tests were used to compare results between the two welding systems. Mean trunk inclination angle was reduced with the alternate system (34.4° versus 9.7°, p < 0.01). Percent time with trunk inclination angles greater than 60° was also reduced (40.0% versus 4.7%, p < 0.01). In general, the alternate system resulted in less desirable upper trapezius muscle activity levels. The alternate system appears to be effective in reducing exposure to extreme trunk flexion among stud welders. Continued development of the system should explore features designed to reduce shoulder forces and improve productivity.  相似文献   

15.
A laboratory study was conducted to determine the effects of back disability status on endurance time and perceived discomfort during trunk flexion. Eighty participants (40 with chronic or recurrent low back pain (CRLBP), 40 pain-free) were tested. The trunk was flexed to 15 degrees, 30 degrees, 45 degrees and 60 degrees under three conditions: 1) continuous static flexion; 2) cyclical flexion with 20% rest; and 3) cyclical flexion with 40% rest. Each condition was performed for up to 600 s or until the participant reached his/her pain tolerance limit. Dependent variables included time to distracting discomfort (TDD), total endurance time (TET) and perceived discomfort. For continuous exertions, CRLBP participants had lower TDD (p < 0.001), lower TET (p < 0.001) and greater discomfort (p < 0.001) compared to pain-free controls. In both groups, TDD and TET decreased and perceived discomfort increased as the flexion angle increased. For intermittent exertions, CRLBP participants reported greater discomfort than pain-free participants (p < 0.001). Increasing rest from 20 to 40% reduced discomfort in CRLBP participants, but produced no consistent benefit in pain-free participants. To accommodate persons with CRLBP, consideration should be given to reducing both the magnitude (angle) and duration of trunk flexion required by their jobs.  相似文献   

16.
Workers lose height during the day. Flexion-based exercises and body positions are commonly prescribed to unload the spine and prevent back pain. Lumbar extension positions have been researched and result in an increase in spine height. End-range lumbar extension postures increase spine height to a greater extent than mid-range lumbar extension postures, but these positions are not always tolerated by patients with lumbar conditions. No study to date has investigated the effect of end-range versus mid-range lumbar flexion postures on spine height changes. The purpose of this study was to investigate the effects of two techniques commonly used in clinical settings to unload the lumbar intervertebral disc (IVD) segments through increasing spine height in: (1) a sidelying mid-range lumbar flexion position; and (2) a sidelying end-range lumbar flexion position. A total of 20 asymptomatic women and 21 asymptomatic men with a mean age of 23.8 years (±2.5) participated in the study. Subjects were randomized systematically into 2 groups to determine the order of testing position. Measurements were taken with a stadiometer in the sitting position to detect change in spine height after each position. Results of the paired t-tests indicated that compared to the spine height in sitting, the sidelying end-range lumbar flexion position resulted in a statistically significant (p < .001) mean spine height gain of 4.78 mm (±4.01) while the sidelying mid-range lumbar flexion position resulted in a statistically significant (p < .001) mean spine height gain of 5.84 mm (±4.4). No significant difference between the height changes observed following the two sidelying positions was found (p = .22). Sidelying lumbar flexion positions offer valuable alternatives to lumbar extension positions to increase spine height, possibly through increasing hydration levels of the lumbar IVD and could be proposed as techniques to offset spinal shrinkage and the biomechanical consequences of sustained loads.  相似文献   

17.
《Ergonomics》2012,55(5-6):693-707
Abstract

Improper posture is considered as one of the causes for low back pain. This study focused attention on low back pain that occurs when people adopt a dynamic posture. Low back pain in attendants was investigated as a typical example of low back pain in a dynamic posture. When multi-dimensional quantification III was applied to the results of the investigation, low back pain was found to occur in six postural patterns: bending knee posture, the posture of lifting and holding a light object, the posture of tilting the trunk, working posture to push a cart, the posture of turning or lifting a cart, and the posture of stretching. This survey found that low back pain frequently occurred when an unexpected load was imposed on the lumbar region and experiments were conducted to simulate the unexpected loading of this region. The experimental results showed that lumbar muscular activity was not fast enough to cope with the load and resulted in an increased swaying of the trunk. This swaying was considered to induce a load on the lumbar region. It is concluded that low back pain can be prevented if an appropriate preparatory set is taken.  相似文献   

18.
Back injury caused by sudden loading is a significant risk among workers that perform manual handling tasks. The present study investigated the effects of load handling position on trunk biomechanics (flexion angle, L5/S1 joint moment and compression force) during sudden loading. Eleven subjects were exposed to a 6.8 kg sudden loading while standing upright, facing forward and holding load at three different vertical heights in the sagittal plane or 45° left to the sagittal plane (created by arm rotation). Results showed that the increase of load holding height significantly elevated the peak L5/S1 joint compression force and reduced the magnitude of trunk flexion. Further, experiencing sudden loading from an asymmetric direction resulted in significantly smaller peak L5/S1 joint compression force, trunk flexion angle and L5/S1 joint moment than a symmetric posture. These findings suggest that handling loads in a lower position could work as a protective strategy during sudden loading.  相似文献   

19.
《Ergonomics》2012,55(9):1162-1168
Prolonged sitting with spine flexion has been linked to low back disorders. A variety of mechanisms account for this based on biomechanical and neurological variables. Airline seats typically cause pronounced lumbar flexion due to their hollowed seat back design. A pneumatic support, placed between the seat back and the lumbar spine, was tested to see if lumbar flexion was reduced. Results showed that when the seats were positioned in the upright position, 15 of 20 participants experienced reduced lumbar flexion (by 15° on average) with the support. The study was repeated on the five non-responders with the seatback set in the reclined position. This resulted in another four experiencing less lumbar flexion. Since seated flexion is associated with disc stress, reducing flexion with the support reduced lumbar stress. Spine flexion that results from prolonged sitting is associated with disc stress and pain. The pneumatic support tested here reduced spine flexion. While it is not known why airline seats are designed with no lumbar support, which causes excessive lumbar flexion while seated, the pneumatic support corrected this deficit. Reclining the seatback enhanced this effect.  相似文献   

20.
K Omino  Y Hayashi 《Ergonomics》1992,35(5-6):693-707
Improper posture is considered as one of the causes for low back pain. This study focused attention on low back pain that occurs when people adopt a dynamic posture. Low back pain in attendants was investigated as a typical example of low back pain in a dynamic posture. When multi-dimensional quantification III was applied to the results of the investigation, low back pain was found to occur in six postural patterns: bending knee posture, the posture of lifting and holding a light object, the posture of tilting the trunk, working posture to push a cart, the posture of turning or lifting a cart, and the posture of stretching. This survey found that low back pain frequently occurred when an unexpected load was imposed on the lumbar region and experiments were conducted to simulate the unexpected loading of this region. The experimental results showed that lumbar muscular activity was not fast enough to cope with the load and resulted in an increased swaying of the trunk. This swaying was considered to induce a load on the lumbar region. It is concluded that low back pain can be prevented if an appropriate preparatory set is taken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号