首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract— An inorganic‐dominated silica/polyimide (PI) hybrid film has been successfully developed for the fabrication of flexible AMOLEDs. The existence of networks between silica particles in the PI matrix have been confirmed by 3‐D tomography, respectively. The inorganic—organic hybrid film was achieved by roll‐type processing with a variety of attractive properties, such as low coefficient of thermal expansion (CTE, 20 ppm/°C), high transmittance (within the wavelength range of 400–700 nm), excellent flexibility, and high Young's modulus. Additionally, a flexible color‐filter, an AMEPD, and a flexible touch film were fabricated on hybrid film.  相似文献   

2.
Abstract— A novel flexible active‐matrix organic light‐emitting‐diode (OLED) display fabricated on planarized stainless—used‐steel substrates with a resolution of 85 dpi in a 4.7‐in. active area has been demonstrated. Amorphous indium—gallium—zinc—oxide thin‐film transistors were used as the backplane for the OLED display with high device performance, high electrical stability, and long lifetime. A full‐color moving image at a frame frequency of 60 Hz was also realized by using a flexible color filter directly patterned on a plastic substrate with a white OLED as the light source.  相似文献   

3.
We developed a high‐performance 3.4‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display with remarkably high resolution using an oxide semiconductor in a backplane, by applying our transfer technology that utilizes metal separation layers. Using this panel, we also fabricated a prototype of a side‐roll display for mobile uses. In these AMOLED displays, a white OLED combined with a color filter was used in order to achieve remarkably high resolution. For the white OLED, a tandem structure in which a phosphorescent emission unit and a fluorescent emission unit are serially connected with an intermediate layer sandwiched between the emission units was employed. Furthermore, revolutionary technologies that enable a reduction in power consumption in both the phosphorescent and fluorescent emission units were introduced to the white tandem OLED.  相似文献   

4.
To come out with a successful organic light‐emitting diode (OLED) lighting business, it is very important to have clear differentiation of OLED from LEDs. Flexible OLED has merits, such as capability to be mounted on the curved wall, which is not easy for LEDs to achieve the feature. There are several approaches to make flexible OLEDs especially among those plastic barrier films that can bring high level of flexibility, which could not be achieved by any conventional lighting method. In this paper, barrier films with various water vapor transmission rate values, including 10? 6 order, are applied, and the conditions to have almost no dark spot growth under 85 °C and 85% high temperature/humidity test are shown. Flexible OLED panels are manufactured with the world's first roll‐to‐roll equipment using plastic barrier film.  相似文献   

5.
A flexible vertically stacked flexible polychromatic color‐tunable OLED has been developed by means of low resistive intermediate electrode technology. The polychromatic OLED has a capability to show 16 million colors with 105% National Television Committee Standard (NTSC) color reproduction. The device can produce arbitrary shape with arbitrary colors, suitable for artistic expressions, just as many as those used in information displays. Independently controlled red, green, and blue light‐emitting layers are stacked vertically. With conventional indium tin oxide technology, because of the temperature restriction, it was quite difficult to achieve low resistance on plastic substrate. The reported numbers were all more than 80 Ω/□. According to the surface mobility control using Fick's law analysis, low sheet resistance 7.34 Ω/□ on plastic film was developed. At first, flexible 7.17 cm2 transparent OLED was fabricated for the performance confirmation of transparent electrode. And then polychromatic color‐tunable OLED with the same size were successfully fabricated on plastic. With optical length optimization for each color stack of polychromatic OLED, more than 100% color reproduction in National Television Committee Standard was achieved by stack design. The polychromatic device can be used for colored illumination, as well as for organic‐light‐emitting display pixels for three times emission than conventional pixel design. The device is fabricated on plastic substrate so that the polychromatic organic‐light‐emitting‐diode device is manufacturable with roll‐to‐roll production line.  相似文献   

6.
A foldable organic light‐emitting diode display integrating a touch sensor is fabricated. The touch sensor has an in‐cell structure where metal‐mesh sensor electrodes are formed in a counter substrate. It is demonstrated that touch on the entire panel surface, including a bent portion, is detected and that the touch panel operates correctly after 100,000 folding operations with a radius of curvature of 5 mm.  相似文献   

7.
A flexible hybrid substrate was developed and demonstrated for roll‐to‐roll (R2R) manufacturing. Layer‐by‐layer misalignment can be well controlled within 5 µm. Top‐gate amorphous InGaZnO thin‐film transistor was fabricated on the flexible hybrid substrate by R2R process for the first time. A 4.3‐in. segment‐type reflective Electro‐Phoretic Display (EPD) display was also demonstrated to show the R2R capability of flexible substrates.  相似文献   

8.
Abstract— Color displays and flexible displays that use electronic liquid powder have been developed. Novel types of color displays using either a colored powder or a color filter are discussed. We have also developed a flexible display with low‐cost substrate films with a high‐throughput roll‐to‐roll manufacturing method. These technologies enable a QR‐LPD to be widely used as an electronic‐paper display.  相似文献   

9.
By weak bonding method, the first organic light‐emitting diode (OLED) display with 620°C low‐temperature poly‐silicon (LTPS) thin film transistor (TFT) and touch sensor, without polyimide (PI) substrate, formed on glass substrates is transferred to non‐PI flexible substrates. After transfer, the display image is free from defect, and touch sensor functions normally. Compared with device made on PI substrate, the advantages of device stability and pitch variation by transferring are shown.  相似文献   

10.
In an effort to create a truly flexible and wearable display having a flexible battery as well as a flexible organic light‐emitting diode panel and a flexible printed circuit, a flexible lithium‐ion battery has been developed, and a prototype wrist‐wearable or arm‐wearable display has been fabricated. Owing to improvements in the internal structure and exterior of the lithium‐ion battery, no remarkable changes in charge and discharge curves and the internal state of the electrodes were observed even after conducting a 10,000‐cycle bending test. Therefore, this flexible lithium‐ion battery prototype demonstrated remarkable bending resistance. Thus, we succeeded in fabricating a truly flexible and wearable display comprised of a flexible organic light‐emitting diode panel, a flexible printed circuit, and a flexible battery.  相似文献   

11.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

12.
In this study, the device structure of a white tandem organic light‐emitting diode (OLED) was changed to control the emission area and thereby achieve less luminance decay. A long‐life 13.5‐inch 4 K flexible c‐axis‐aligned crystal oxide semiconductor (CAAC‐OS) active‐matrix OLED with less color shift and high resolution was fabricated using this long‐life white OLED, transfer technology, and a CAAC‐OS field‐effect transistor.  相似文献   

13.
Abstract— Organic light‐emitting‐device (OLED) devices are very promising candidates for flexible‐display applications because of their organic thin‐film configuration and excellent optical and video performance. Recent progress of flexible‐OLED technologies for high‐performance full‐color active‐matrix OLED (AMOLED) displays will be presented and future challenges will be discussed. Specific focus is placed on technology components, including high‐efficiency phosphorescent OLED technology, substrates and backplanes for flexible displays, transparent compound cathode technology, conformal packaging, and the flexibility testing of these devices. Finally, the latest prototype in collaboration with LG. Phillips LCD, a flexible 4‐in. QVGA full‐color AMOLED built on amorphous‐silicon backplane, will be described.  相似文献   

14.
Abstract— The image quality of an OTFT‐driven flexible AMOLED display has been improved by enhancing the performance of OTFTs and OLEDs. To reduce the operating voltage of OTFTs on a plastic film, Ta2O5 with a high dielectric constant was used as a gate insulator. The organic semiconductor layer of the OTFT was successfully patterned by a polymer separator, which is an isolating wall structure using an organic material. The OTFT performance, such as its current on/off ratio, carrier mobility, and spatial uniformity on the backplane, was enhanced. A highly efficient phosphorescent OLED was used as a light‐emission device. A very thin molybdenum oxide film was introduced as a carrier‐injection layer on a pixel electrode to reduce the operating voltage of the OLED. After an OTFT‐driven flexible AMOLED display was fabricated, the luminance and uniformity on the display was improved. The fabricated display also showed clear moving images, even when it was bent at a low operating voltage.  相似文献   

15.
Abstract— Novaled's PIN‐OLED® technology allows for highly efficient, temperature stable, and long‐lived OLEDs suited for a variety of display applications. This paper delivers an overview about Novaled's state of the art, including top‐ and bottom‐emitting structures. It is discussed how PIN‐OLEDs give rise to an increased manufacturing yield. The main focus of this paper is the development of white OLEDs for display use. When the RGBW color‐filter approach is used in combination with white OLEDs, the resulting full‐color OLED display is able to deliver high color quality and remain highly power efficient. For such a case, the manufacturing infrastructure of OLEDs for lighting can be used. We use tandem architectures, bottom‐ and top‐emission architectures, and developed specific high‐temperature stable OLED stacks. The importance of matching color coordinates of the white OLED and the targeted display white color point is of outstanding importance. Results have mainly been achieved under the German‐funded project CARO and the European‐funded project AMAZOLED.  相似文献   

16.
Abstract— By using current technology, it is possible to design and fabricate performance‐competitive TV‐sized AMOLED displays. In this paper, the system design considerations are described that lead to the selection of the device architecture (including a stacked white OLED‐emitting unit), the backplane technology [an amorphous Si (a‐Si) backplane with compensation for TFT degradation], and module design (for long life and low cost). The resulting AMOLED displays will meet performance and lifetime requirements, and will be manufacturing cost‐competitive for TV applications. A high‐performance 14‐in. AMOLED display was fabricated by using an in‐line OLED deposition machine to demonstrate some of these approaches. The chosen OLED technologies are scalable to larger glass substrate sizes compatible with existing a‐Si backplane fabs.  相似文献   

17.
A 0.5‐inch Ultra Extended Graphics Array (UXGA) organic light‐emitting diodes microdisplay has been developed with 6.3 μm pixel pitch. Not only 4032 ppi high resolution but high frame rate, low power consumption, wide viewing angle, and high luminance have been achieved. This newly developed organic light‐emitting diodes microdisplay is suitable for Near‐to‐Eye display applications, especially electronic viewfinders.  相似文献   

18.
Abstract— We have developed an integrated poly‐Si TFT current data driver with a data‐line pre‐charge function for active‐matrix organic light‐emitting diode (AMOLED) displays. The current data driver is capable of outputting highly accurate (±0.8%) current determined by 6‐bit digital input data. A novel current‐programming approach employing a data‐line pre‐charge function helps achieve accurate current programming at low brightness. A 1.9‐in. 120 × 136‐pixel AMOLED display using these circuits was demonstrated.  相似文献   

19.
Abstract— A novel display system, refered to as an LFD (liquid crystal with fine‐pitch light‐source display) is proposed. In an LFD, an auxiliary light source patterned with a fine pitch is attached to a reflective liquid‐crystal display (LCD), and a light shield is formed on the observer's side of the light source. A vertical‐alignment LCD (VA‐LCD) is attached as the reflective LCD, and an organic light‐emitting diode (OLED) is attached as the fine‐pitch light source. An LFD can produce bright, high‐contrast images under any ambient light. A test sample was built and its display characteristics confirmed.  相似文献   

20.
Abstract— Work on the world's first wrist‐worn communications device built on a flexible, low‐power‐consumption full‐color AMOLED using phosphorescent OLEDs is presented. The device offers the wearer the ability to see high‐information‐content video‐rate information in a thin‐and‐rugged‐form‐factor 4‐in. QVGA display, conformed around a human wrist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号