首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In this paper we propose a new approach to solve some challenges in the simultaneous localization and mapping (SLAM) problem based on the relative map filter (RMF). This method assumes that the relative distances between the landmarks of relative map are estimated fully independently. This considerably reduces the computational complexity to average number of landmarks observed in each scan. To solve the ambiguity that may happen in finding the absolute locations of robot and landmarks, we have proposed two separate methods, the lowest position error (LPE) and minimum variance position estimator (MVPE). Another challenge in RMF is data association problem where we also propose an algorithm which works by using motion sensors without engaging in their cumulative error. To apply these methods, we switch successively between the absolute and relative positions of landmarks. Having a sufficient number of landmarks in the environment, our algorithm estimates the positions of robot and landmarks without using motion sensors and kinematics of robot. Motion sensors are only used for data association. The empirical studies on the proposed RMF-SLAM algorithm with the LPE or MVPE methods show a better accuracy in localization of robot and landmarks in comparison with the absolute map filter SLAM.  相似文献   

2.
We present a simultaneous localization and mapping (SLAM) algorithm that uses Bézier curves as static landmark primitives rather than feature points. Our approach allows us to estimate the full six degrees of freedom pose of a robot while providing a structured map that can be used to assist a robot in motion planning and control. We demonstrate how to reconstruct the three‐dimensional (3D) location of curve landmarks from a stereo pair and how to compare the 3D shape of curve landmarks between chronologically sequential stereo frames to solve the data association problem. We also present a method to combine curve landmarks for mapping purposes, resulting in a map with a continuous set of curves that contain fewer landmark states than conventional point‐based SLAM algorithms. We demonstrate our algorithm's effectiveness with numerous experiments, including comparisons to existing state‐of‐the‐art SLAM algorithms.  相似文献   

3.
针对无预置陆标的环境, 研究移动机器人动态在线配置陆标问题及基于此的主动探索. 首先, 提出陆标动态在线配置准则, 并分析陆标配置对机器人定位与建图的影响; 然后基于扩展的卡尔曼滤波器, 将机器人的主动探索转化为多目标最优控制问题, 优化目标包含3个部分, 分别对应定位与建图的准确性、机器人预期探索的新区域大小和陆标配置对定位与建图的影响, 机器人选取最优化目标函数的控制输入以实现准确的定位、建图和对环境的充分探索; 最后对陆标进行有效的增补和去冗余. 仿真结果表明该方法的有效性.  相似文献   

4.
在一些布局易变或存在较多动态障碍物的室内,移动机器人的全局定位依然面临较大的应用挑战.针对这类场景,实现了一种新的基于人工路标的易部署室内机器人全局定位系统.该系统将人工路标粘贴在不易被遮挡的天花板上来作为参照物,仅依赖一个摄像头即能实现稳定的全局定位.整个系统根据具体的功能分为地图构建和全局定位两个过程.在地图构建过程中,系统使用激光SLAM算法所输出的位姿估计结果为基准,根据相机对路标点的观测信息来自动估计人工路标点在全局坐标系中的位姿,建立人工路标地图.而在全局定位过程中,该系统则是根据相机对地图中已知位姿的人工路标点的观测信息,结合里程计与IMU融合的预积分信息来对位姿进行实时估计.充分的实验测试表明,机器人在该系统所部署范围内运行的定位误差稳定在10 cm以内,且运行过程可以保证实时位姿输出,满足典型实际室内移动机器人全局定位的应用需求.  相似文献   

5.
Visual localization in outdoor environments is subject to varying appearance conditions rendering it difficult to match current camera images against a previously recorded map. Although it is possible to extend the respective maps to allow precise localization across a wide range of differing appearance conditions, these maps quickly grow in size and become impractical to handle on a mobile robotic platform. To address this problem, we present a landmark selection algorithm that exploits appearance co‐observability for efficient visual localization in outdoor environments. Based on the appearance condition inferred from recently observed landmarks, a small fraction of landmarks useful under the current appearance condition is selected and used for localization. This allows to greatly reduce the bandwidth consumption between the mobile platform and a map backend in a shared‐map scenario, and significantly lowers the demands on the computational resources on said mobile platform. We derive a landmark ranking function that exhibits high performance under vastly changing appearance conditions and is agnostic to the distribution of landmarks across the different map sessions. Furthermore, we relate and compare our proposed appearance‐based landmark ranking function to popular ranking schemes from information retrieval, and validate our results on the challenging University of Michigan North Campus long‐term vision and LIDAR data sets (NCLT), including an evaluation of the localization accuracy using ground‐truth poses. In addition to that, we investigate the computational and bandwidth resource demands. Our results show that by selecting 20–30% of landmarks using our proposed approach, a similar localization performance as the baseline strategy using all landmarks is achieved.  相似文献   

6.
Vision-based global localization and mapping for mobile robots   总被引:14,自引:0,他引:14  
We have previously developed a mobile robot system which uses scale-invariant visual landmarks to localize and simultaneously build three-dimensional (3-D) maps of unmodified environments. In this paper, we examine global localization, where the robot localizes itself globally, without any prior location estimate. This is achieved by matching distinctive visual landmarks in the current frame to a database map. A Hough transform approach and a RANSAC approach for global localization are compared, showing that RANSAC is much more efficient for matching specific features, but much worse for matching nonspecific features. Moreover, robust global localization can be achieved by matching a small submap of the local region built from multiple frames. This submap alignment algorithm for global localization can be applied to map building, which can be regarded as alignment of multiple 3-D submaps. A global minimization procedure is carried out using the loop closure constraint to avoid the effects of slippage and drift accumulation. Landmark uncertainty is taken into account in the submap alignment and the global minimization process. Experiments show that global localization can be achieved accurately using the scale-invariant landmarks. Our approach of pairwise submap alignment with backward correction in a consistent manner produces a better global 3-D map.  相似文献   

7.
目标搜索是多机器人领域的一个挑战.本文针对栅格地图中多机器人目标搜索算法进行研究.首先,利用Dempster-Shafer证据理论将声纳传感器获取的环境信息进行融合,构建搜索环境的栅格地图.然后,基于栅格地图建立生物启发神经网络用于表示动态的环境.在生物启发神经网络中,目标通过神经元的活性值全局的吸引机器人.同时,障碍物通过神经元活性值局部的排斥机器人,避免与其相撞.最后,机器人根据梯度递减原则自动的规划出搜索路径.仿真和实验结果显示本文提及的算法能够实现栅格地图中静态目标和动态目标的搜索.与其他搜索算法比较,本文所提及的目标搜索算法有更高的效率和适用性.  相似文献   

8.
Developing real-life solutions for implementation of the simultaneous localization and mapping (SLAM) algorithm for mobile robots has been well regarded as a complex problem for quite some time now. Our present work demonstrates a successful real implementation of extended Kalman filter (EKF) based SLAM algorithm for indoor environments, utilizing two web-cam based stereo-vision sensing mechanism. The vision-sensing mechanism is a successful development of a real algorithm for image feature identification in frames grabbed from continuously running videos on two cameras, tracking of these identified features in subsequent frames and incorporation of these landmarks in the map created, utilizing a 3D distance calculation module. The system has been successfully test-run in laboratory environments where the robot is commanded to navigate through some specified waypoints and create a map of its surrounding environment. Our experimentations showed that the estimated positions of the landmarks identified in the map created closely tallies with the actual positions of these landmarks in real-life.  相似文献   

9.
In this paper we address the problem of autonomously localizing multiple gas/odor sources in an indoor environment without a strong airflow. To do this, a robot iteratively creates an occupancy grid map. The produced map shows the probability each discrete cell contains a source. Our approach is based on a recent adaptation (Jakuba, 2007) [16] to traditional Bayesian occupancy grid mapping for chemical source localization problems. The approach is less sensitive, in the considered scenario, to the choice of the algorithm parameters. We present experimental results with a robot in an indoor uncontrolled corridor in the presence of different ejecting sources proving the method is able to build reliable maps quickly (5.5 minutes in a 6 m×2.1 m area) and in real time.  相似文献   

10.
《Advanced Robotics》2013,27(6-7):941-962
In this paper we present an algorithm for the application of simultaneous localization and mapping in complex environments. Instead of building a grid map or building a feature map with a small number of the obstacles' geometric parameters, the proposed algorithm builds a sampled environment map (SEM) to represent a complex environment with a set of environment samples. To overcome the lack of one-toone correspondence between environment samples and raw observations, the signed orthogonal distance function is proposed to be used as the observation model. A method considering geometric constraints is presented to remove redundant environment samples from the SEM. We also present a method to improve the SEM's topological consistency by using corner constraints. The proposed algorithm has been verified in a simulation and an indoor experiment. The results show that the algorithm can localize the robot and build a complex map effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号