首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 421 毫秒

1.  BP神经网络的联合优化算法  被引次数:5
   孙娓娓  刘琼荪《计算机工程与应用》,2009年第45卷第12期
   针对BP神经网络存在收敛速度慢、易陷入局部极小等缺陷,提出了一种自适应调节学习率和动态调整S型激励函数相结合的改进BP算法。该算法将学习率与误差函数相关联,再对每个隐单元和输出单元的激励函数的斜率进行自动调整。通过实例仿真,将改进算法与标准BP算法、加动量项法和自适应学习率法进行比较,来验证所提出方法的有效性。实验结果表明,联合优化的BP算法能有效加快网络的收敛过程,并具有较强的泛化能力。    

2.  基于改进共轭梯度理论神经网络优化算法研究  
   邢晓敏  商国敬《电测与仪表》,2014年第19期
   文章阐述了一种改进共轭梯度理论神经网络优化算法。该方法是在传统共轭梯度算法(CG)基础上引入对输出权值进行优化的理念,故称其为输出权值优化共轭梯度算法(OWO-CG)。这种算法在进行学习时,首先根据误差函数利用共轭梯度法计算收敛因子,并修改输入层和隐含层的权值因子;接着,计算隐含层输出函数,利用相关输出权值优化理论构建并求解线性方程组得到输出层的权值因子;最后,计算误差函数,利用该算法不停地修正神经网络回路输出值与期望输出值之间的差值,直到满足精度要求为止。仿真验证结果表明,与传统共轭梯度算法相比,这种算法的学习过程更加迅速和准确。    

3.  自组织前向神经网络与非线性动态系统模化  
       韩守木  黄树红  刘德昌《控制理论与应用》,2000年第17卷第1期
   将自组织学习过程引入到前向网络的训练中,提出了一种新的三层前向神经网络的训练方法,训练过程首先利用自组织分族算法确定隐含层结点的数目以及权值,然后通过求解线性最小二乘问题估计输出层权值,自组织过程产生的激活权值对输入数据具有一种特征变换的功能,利用该方法训练的网络可以称之为自组织前向网络(SOFN)。文中通过实际非线性动态系统建模的例子,说明了SOFN网络具有良好性能。    

4.  基于一种杂交学习算法的自适应复信道均衡技术  被引次数:3
   李春光  廖晓峰  吴中福  虞厥邦《通信学报》,2001年第22卷第7期
   本文提出了一种基于多层前馈神经网络杂交学习算法的自适应复信道均衡的新方法。该学习算法用来训练一个输入、输出、权值和激活函数均为复数的神经网络。神经网络的训练利用了监督和非监督相结合的杂交技术,而权值的调整是基于TLS(total least square)准则进行的。计算机仿真结果表明,无论是在线性还是在非线性信道中,所提出的方法都表现出了很好的性能,这为自适应复信道均衡提供了一种新方法。    

5.  一种黄金分割优化的极限学习机算法  
   金培源  高波涌  陈慧娟《中国计量学院学报》,2014年第2期
   针对极限学习机(ELM)存在大量隐层神经元个数和随机给定权值导致算法性能不稳定等问题,将黄金分割法(Golden Section)与ELM相结合提出了基于黄金分割优化的极限学习机算法(GS-ELM).首先通过黄金分割法对ELM隐含层节点数进行优化,接着再用该方法对ELM输入层权值和隐含层偏差进行优化.实验结果表明,相比较传统的BP神经网络,支持向量机和极限学习机,GS-ELM算法能获得较高的分类精度.    

6.  基于神经网络学习控制的图像挖掘算法  
   潘明波《沈阳工业大学学报》,2018年第3期
   针对传统神经网络算法进行图像分类识别时收敛速度慢,学习过程中可能出现震荡甚至收敛于局部极小值的情况,提出了一种小波变换融合神经网络的图像分类识别方法.利用高斯小波基函数取代神经网络隐含层中的隐节点函数,采用小波神经网络参数初始化方法和改进的模拟退火算法自适应调整学习过程中的网络权值参数,从而解决了神经网络的学习效率低等情况.结果表明,本文方法对5类动物图片的正确分类识别率为84.0%,较传统神经网络和稀疏表示的正确分类识别率提高了4.2%和6.1%.    

7.  Adaboost算法改进BP神经网络预测研究  
   李翔  朱全银《计算机工程与科学》,2013年第8期
   针对传统BP神经网络容易陷入局部极小、预测精度低的问题,提出使用Adaboost算法和BP神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行预处理并初始化测试数据分布权值;然后通过选取不同的隐含层节点数、节点传递函数、训练函数、网络学习函数构造出不同类型的BP弱预测器并对样本数据进行反复训练;最后使用Adaboost算法将得到的多个BP神经网络弱预测器组成新的强预测器。对UCI数据库中数据集进行仿真实验,结果表明本方法比传统BP网络预测平均误差绝对值减少近50%,提高了网络预测精度,为神经网络预测提供借鉴。    

8.  基于RBF神经网络的互联网时延预测仿真  
   姚君兰《兵工自动化》,2006年第25卷第4期
   RBF神经网络采用正交最小平方算法(OLS)决定隐层单元数目、基函数的中心和权值.该算法以每个输入样本为聚类中心,随着正交运算次数的增加,网络的输出误差平方将逐步减小到设定误差范围内,得到隐含层节点数和网络的权值.仿真表明RBF神经网络是有效的.    

9.  多策略改进RBF神经网络入侵检测方法研究  
   邵洪涛  秦亮曦《微计算机信息》,2012年第5期
   论文提出了一种多策略改进RBF神经网络入侵检测方法。该方法采用减聚类算法确定隐含层节点数,具有自适应确定隐层节点的能力,避免了调整隐层节点的人为干扰。采用粒子群算法和梯度下降法相结合的方法分别对基函数的中心值、宽度以及隐含层与输出层之间的权值进行全局优化以及局部优化,避免了参数选取的局部性。实验证明,该方法能够有效提高入侵检测系统的检测率,并降低误报率。    

10.  IAFSA-RBF神经网络在短期负荷预测中的应用  
   李如琦  褚金胜  谢林峰  王宗耀《电力系统及其自动化学报》,2011年第23卷第2期
   为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并且利用该算法自动选取径向基函数RBF(radial basis function)神经网络中的输入变量,以及对网络中隐含层到输出层之间的权值进行训练,从而减少了RBF神经网络的工作量,提高了训练速度。用优化后的RBF神经网络进行短期负荷预测,结果表明,该方法具有较高的预测精度。    

11.  两种智能高效预测方法及其在人机系统中的应用  
   王保国  黄伟光  徐燕骥  刘淑艳  刘艳明  钱耕《青岛建筑工程学院学报》,2012年第5期
   提出了两种高预测效率、高泛化能力的数值计算方法,一种方法是小波神经网络(Wavelet NeuralNetwork,WNN)算法;另一种是基于小波尺度函数的WSK-SV(Wavelet Scaling Kernel-Support Vector)算法.WNN算法将小波函数与BP神经网络方法相结合,通过输入层、隐含层、输出层间的连接权重以及隐含层使用的激励函数构成了这种算法的关键技术;WSK-SV算法将小波的尺度函数与SV(Support Vector)方法相结合,使这种算法既保持了SVM(Support Vector Machine)的优点,又具有很好的泛化能力.上述两种算法都属于计算智能(Computational Intelligence,简称CI)方法并用于人机系统的性能预测.    

12.  两种智能高效预测方法及其在人机系统中的应用  
   王保国  黄伟光  徐燕骥  刘淑艳  刘艳明  钱耕《青岛理工大学学报》,2012年第5期
   提出了两种高预测效率、高泛化能力的数值计算方法,一种方法是小波神经网络(Wavelet NeuralNetwork,WNN)算法;另一种是基于小波尺度函数的WSK-SV(Wavelet Scaling Kernel-Support Vector)算法.WNN算法将小波函数与BP神经网络方法相结合,通过输入层、隐含层、输出层间的连接权重以及隐含层使用的激励函数构成了这种算法的关键技术;WSK-SV算法将小波的尺度函数与SV(Support Vector)方法相结合,使这种算法既保持了SVM(Support Vector Machine)的优点,又具有很好的泛化能力.上述两种算法都属于计算智能(Computational Intelligence,简称CI)方法并用于人机系统的性能预测.    

13.  采用变参数激励函数的人工神经网络  被引次数:4
   龙欣海  肖田元  陈晓峰《计算机工程》,2001年第27卷第12期
   隐层神经元采用相同的激励函数会限制网络的非线性表达能力,因此,提出变参数激励函数,在学习中同时调整网络权值和激励函数的参数,增强网络的表达能力。并使用遗传算法与MBP结合的学习算法训练网络,此方法具有全局收敛能力和很高的精度。    

14.  Hermite前向神经网络隐节点数目自动确定  
   张雨浓  肖秀春  陈扬文  邹阿金《浙江大学学报(工学版)》,2010年第44卷第2期
   从函数逼近论出发,构造了一类以Hermite正交基为激励函数的前向神经网络.在保证网络逼近能力的前提下,令其输入层至隐层的权值和各神经元阈值分别为1和0,导出了基于伪逆的隐层至输出层最优权值的直接计算公式.并针对Hermite前向神经网络,提出一种依照学习精度要求而逐次递增型的隐节点数自动、快速、准确的确定算法.对多个目标函数的计算机仿真和预测结果表明,该神经网络权值直接确定方法和隐节点数自动确定算法能很快地找到最优的隐节点数及其对应的最优权值,且网络具有较好的预测能力.    

15.  神经网络的两种结构优化算法研究  被引次数:6
   杨慧中  王伟娜  丁锋《信息与控制》,2006年第35卷第6期
   提出了一种基于权值拟熵的“剪枝算法”与权值敏感度相结合的新方法,在“剪枝算法”中将权值拟熵作为惩罚项加入目标函数中,使多层前向神经网络在学习过程中自动约束权值分布,并以权值敏感度作为简化标准,避免了单纯依赖权值大小剪枝的随机性.同时,又针对剪枝算法在优化多输入多输出网络过程中计算量大、效率不高的问题,提出了一种在级联—相关(cascade correlation, CC)算法的基础上从适当的网络结构开始对网络进行构建的快速“构造算法”.仿真结果表明这种快速构造算法在收敛速度、运行效率乃至泛化性能上都更胜一筹.    

16.  用于风电功率预测的RPCL优化神经网络模型  
   苏义鑫  夏慧雯《北京工业大学学报》,2016年第5期
   为了提高风电功率预测的准确度,提出了一种基于对手竞争惩罚学习算法( rival penalized competitive learning,RPCL)优化径向基函数( radial basis function,RBF)神经网络的风电功率预测模型。首先通过RPCL确定网络隐含层神经元数目以及中心点初始值,然后由K均值聚类法确定隐含层神经元的中心点和宽度,最后通过最小均值算法确定隐含层神经元与输出层神经元之间的权值。仿真结果表明:此优化模型相较于传统RBF网络具有更高的准确性。    

17.  量子BP神经网络在发动机故障诊断中的应用  
   李胜  张培林  李兵  李琛《中国机械工程》,2014年第16期
   为了解决普通BP神经网络收敛速度慢、分类正确率低等问题,提出一种量子BP神经网络算法。该算法在普通BP神经网络中引入了量子算法,量子BP神经网络结构由输入层、隐含层和输出层组成,其中,量子神经元的输入和传递函数均由量子比特表示,输出结果为实数。首先,该算法将实数值训练样本变换为量子态训练样本,从而作为算法的输入。然后,通过传递函数,计算量子态权值并更新网络参数以达到训练效果。最后,利用训练好的网络进行故障诊断,并将结果以实数值输出。将该方法应用于发动机故障诊断,实验结果表明,与普通BP神经网络相比,量子BP神经网络算法在收敛速度、分类正确率和执行时间等方面具有明显的优势。    

18.  基于粒子群算法的RBF网络参数优化算法  被引次数:4
   崔海青  刘希玉《计算机技术与发展》,2009年第19卷第12期
   针对神经网络的一些缺陷,研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于RBF神经网络的学习训练。提出了一种基于粒子群优化(PSO)算法的径向基(RBF)网络参数优化算法,首先利用减聚类算法确定网络径向基函数中心的个数,再用PSO算法优化径向基函数的中心及宽度,最后用PSO算法训练隐含层到输出层的网络权值,找到神经网络权值的最优解,以达到优化神经网络学习的目的。最后,通过一个实验与最小二乘法优化的神经网络进行了比较,验证了算法的有效性。    

19.  正交投影神经网络的BP和GS杂交学习算法  
   肖少拥 石文俊 冯树椿 胡上序《浙江大学学报(自然科学版 )》,2001年第35卷第2期
   主要讨论具有单隐层的正交投影神经网络的权值和阈值的学习问题,提出了一种新的将BP算法和GS算法相结合的杂交学习算法,其中GS算法对隐层到输出层的权值和阈值进行学习,BP算法用于输入层到隐层权值的学习,并给出一种最佳的隐层节点数的选取方法.仿真实验表明,该杂交学习算法具有学习速度快且能获得全局最优解的特点,并可有效地对学习过程中出现的病态情况进行求解,具有良好的普适性。    

20.  基于RBF神经网络的产品概念设计方案评价  
   陈微微  张强  魏小鹏  赵婷婷  赵秀燕《计算机工程与设计》,2009年第30卷第18期
   分析了现有评价方法存在的问题,利用Matlab神经网络工具箱构建了RBF网络模型,并以冰箱为实例进行评价.RBF神经网络采用监督学习算法和正交最小平方(OLS)算法决定基函数的中心、方差以及隐含层到输出层的权值.与BP神经网络模型的评价结果对比,建立的RBF神经网络评价模型具有更高的预测精度,收敛速度更快.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号