共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于迁移学习的径向基函数神经网络学习 总被引:1,自引:0,他引:1
现实场景中存在很多小样本量数据集而且多有失真,传统神经网络在处理这类数据时泛化能力较差,不能达到预测数据或分类的目的。迁移学习可通过学习数据集A有用的知识对与其相关但不同正态分布的小样本数据集B进行辅助学习,因此提出了具有迁移学习能力的神经网络,以实现更好的分类或逼近效果。以基于ε-不敏感准则和结构风险的径向基神经网络(RBF)为基础构造了迁移径向基神经网络(T-RBF-NN)。通过加噪音数据集实验以及真实数据集实验验证加入迁移学习的神经网络在小样本情况下比传统神经网络具有更好的泛化性和鲁棒性。 相似文献
4.
为设计具有良好逼近性能的径向基神经网络,提出一种两层结构的自适应混合学习算法.内层迭代过程综合了梯度下降法和智能优化方法的优点,采用基于衰减梯度信息的智能优化方法,对具有固定结构的网络进行参数训练;外层迭代根据内层迭代的效果,利用最优停止规则自适应地动态调节网络隐含层节点数,使算法以较大概率收敛至全局最优.设计了网络结构修正算子,实现对最终结果的进一步简化.最后,文章给出算法实现的具体步骤,并通过仿真实例验证了算法有效性和可行性. 相似文献
5.
改进的径向基函数神经网络预测模型 总被引:1,自引:0,他引:1
在提高网络传输性能的研究中,径向基函数神经网络(RBF网络)的基函数个数、中心及宽度的确定一直是难解决的问题,为提高RBF网络泛化能力是当前一个重要的研究问题.分析了传统RBF网络工作原理及不足,提出了改进.采用梯度下降法训练径向基函数中心和宽度,提高网络泛化性能.改进最优停止训练算法,使算法效率提高,且避免过拟合现象,最终使RBF网络获得更优的泛化能力.用改进的RBF网络对iris及wine数据集建立预测模型,进行仿真.结果表明,梯度下降方法训练出更优的基函数参数,改进的最优停止训练方法缩短了训练时间、提高预测精度,网络泛化能力有明显提高. 相似文献
6.
为了求解径向基函数神经网络的权值,首先分析了传统基于训练误差的方法,发现该方法容易造成数据过拟合,原因在于训练误差是风险函数的下偏估计;因此,文中提出采用缺一交叉验证得分代替训练误差,来实现无偏估计风险函数;实验对摩托数据与玻璃数据进行拟合,证实了基于缺一交叉验证的方法优于传统基于训练误差的方法,且所得到的径向基函数网络能够较光滑地拟合数据,不会造成过拟合. 相似文献
7.
8.
如何建立合适的模糊规则.是模糊系统设计的关键和难点。传统的方法是依靠统计分析或经验建立模糊规则库[lJ,不仅难度大,而且建立的模糊系统缺乏适应能力。人工神经网络(ANN)技术的发展为模糊规则的自动获取提供了一条新途径.许多学者研究ANN与模糊系统的融合问题,其主要目的就是利用ANN的学习能力和自适应能力,从样本中提取模糊规则.形成具有自适应能力的模糊系统。尽管利用多层前馈网获取模糊规则口 相似文献
9.
许新征 《计算机工程与应用》2007,43(14):75-76
提出了一种新的结构自适应的径向基函数(RBF)神经网络模型。在该网络中,自组织映射(SOM)神经网络作为聚类网络,采用无监督学习算法对输入样本进行自组织分类,并将分类中心及其对应的权值向量传递给RBF神经网络,作为径向基函数的中心和相应的权值向量;RBF神经网络作为基础网络,采用高斯函数实现输入层到隐层的非线性映射,输出层则采用有监督学习算法训练网络的权值,从而实现输入层到输出层的非线性映射。通过对字母数据集进行仿真,表明该网络具有较好的性能。 相似文献
10.
一种新颖的径向基函数(RBF)网络学习算法 总被引:21,自引:0,他引:21
以提高RBF网络泛化能力为着眼点,提出了一种新型的网络结构自适应学习算法.该算法采用衰减聚类半径的聚类算法来确定初始的隐层结构,然后通过调整包含样本类别信息的扩展聚类不纯度来修正隐层结构,直至满足所有扩展聚类不纯度均小于等于不纯度均值以及所有扩展聚类方差均不超过方差均值这两个条件.这样就确定了隐层的最终结构.在确定隐层结构之后,采用反向传播算法来训练隐层与输出层之间的连接权重.经双螺旋线问题仿真试验验证,该算法确实具有较强的泛化能力. 相似文献
11.
Radial Basis Neural Networks have been successfully used in a large number of applications having in its rapid convergence time one of its most important advantages. However, the level of generalization is usually poor and very dependent on the quality of the training data because some of the training patterns can be redundant or irrelevant. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be approximated. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domainsan artificial regression problem and two time series prediction problems. Results have been compared to standard training method using the complete training data set and the new method shows better generalization abilities. 相似文献
12.
In this paper, we describe a new error-driven active learning approach to self-growing radial basis function networks for early robot learning. There are several mappings that need to be set up for an autonomous robot system for sensorimotor coordination and transformation of sensory information from one modality to another, and these mappings are usually highly nonlinear. Traditional passive learning approaches usually cause both large mapping errors and nonuniform mapping error distribution compared to active learning. A hierarchical clustering technique is introduced to group large mapping errors and these error clusters drive the system to actively explore details of these clusters. Higher level local growing radial basis function subnetworks are used to approximate the residual errors from previous mapping levels. Plastic radial basis function networks construct the substrate of the learning system and a simplified node-decoupled extended Kalman filter algorithm is presented to train these radial basis function networks. Experimental results are given to compare the performance among active learning with hierarchical adaptive RBF networks, passive learning with adaptive RBF networks and hierarchical mixtures of experts, as well as their robustness under noise conditions. 相似文献
13.
自适应RBF-LBF串联神经网络结构与参数优化方法 总被引:2,自引:0,他引:2
研究了前向单层径基函数(RBF)网络和前向单层线性基本函数(LBF)网络的分类机理,提出了RBF的中心和宽度应通过学习自动确定,在学习过程中根据错分样本被错分入的类别自动生成新的核函数这一观点.如果两个或两个以上核函数属于同一类,在输入空间相距较近且未被其它类别的样本分隔开来的情况下,则应考虑将之合并,或者使它们的作用区域部分重叠.从理论上阐明了采用Sigmoid活化函数的单层感知器的分类阈值为0.5,进而提出了由单层RBF网络和单层感知器组成的串联RBF—LBF神经网络.文中详细给出了确定该串联RBF—LBF神经网络结构、核函数个数、位置与宽度的优化算法.一般来说,该算法的计算复杂性比前向单隐层感知器采用的误差反传算法要小或至少相当.对几个经典的模式分类难题的处理结果表明,与一般RBF网络和前向单隐层感知器网络相比,该串联RBF—LBF网络及其自适应学习算法具有收敛速度快,分类精度高,易于得到最小结构,在学习过程中不易陷入局部极小点等优点,有利于实现实时分析.实验结果同时也验证了单层LBF网络对提高RBF—LBF网络分类正确率的重要性. 相似文献
14.
地球系统模式的现有插值算法误差较大、网格适用性差,无法满足其未来的发展需求。提出了一种插值算法分类方法,根据此方法设计了一个通用插值算法模型。该模型基于复合算法的思想,既可表示现有算法,还可通过选择适当的两个算法灵活构造出局部的高精度的新算法。根据此模型并利用径向基函数良好的插值效果提出了两个新的插值算法。基于球面Voronoi图的搜索算法可有效优化插值算法的实现。实验结果表明新算法具有良好的插值效果。 相似文献
15.
16.
In this paper radial basis function (RBF) networks are used to model general non-linear discrete-time systems. In particular, reciprocal multiquadric functions are used as activation functions for the RBF networks. A stepwise regression algorithm based on orthogonalization and a series of statistical tests is employed for designing and training of the network. The identification method yields non-linear models, which are stable and linear in the model parameters. The advantages of the proposed method compared to other radial basis function methods and backpropagation neural networks are described. Finally, the effectiveness of the identification method is demonstrated by the identification of two non-linear chemical processes, a simulated continuous stirred tank reactor and an experimental pH neutralization process. 相似文献
17.
针对船舶在海上运动的大时滞和动态时变等特点,提出基于一种变结构径向基函数(RBF)神经网络的预测PID控制器.通过建立反映系统动态变化的滑动数据窗口,在线序贯学习窗口内的数据,动态调整隐层节点与隐层至输出层的连接权值,得到结构可自适应变化的RBF网络.将该变结构RBF网络用于预测PID控制器中系统状态的在线多步预测,通过得到的预测模型灵敏度信息在线调整PID控制器参数以控制系统的输出.将该控制器用于船舶航向跟踪控制的仿真实验,结果表明该控制器具有良好的的适应性和鲁棒性. 相似文献
18.
径向基函数网络的功能分析与应用的研究 总被引:37,自引:1,他引:36
丛爽 《计算机工程与应用》2002,38(3):85-87,200
径向基函数网络与BP网络在网络结构上都属于前向网络,但它们对网络权值训练所采用的算法是完全不同的。另外,径向基函数网络的网络结构与模糊系统有很紧密的关联。该文从径向基函数网络的结构入手,分别对其所具有的特点、权值训练、网络设计方法及其应用等方面,通过分析与实例,采用对比的方式,给予实验的验证。 相似文献
19.
基于遗传算法的前向神经网络结构优化 总被引:2,自引:0,他引:2
对近几年应用遗传算法(Genetic Algorithm,GA)优化设计前向神经网络结构的研究进行了评述。指出了神经网络结构优化设计的重要性和目前各种方法存在的不足。介绍了神经网络结构设计原理和应用GA优化设计神经网络应着重考虑的两个问题:即结构表达策略和适应度函数设计。分别对近来应用GA优化设计多层感知器、径向基函数神经网络和径向基概率神经网络结构的研究进行了细致介绍和分析。指出了目前研究工作的不足和未来研究工作的发展方向。 相似文献