首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Bayesian networks are graphical models that describe dependency relationships between variables, and are powerful tools for studying probability classifiers. At present, the causal Bayesian network learning method is used in constructing Bayesian network classifiers while the contribution of attribute to class is over-looked. In this paper, a Bayesian network specifically for classification-restricted Bayesian classification networks is proposed. Combining dependency analysis between variables, classification accuracy evaluation criteria and a search algorithm, a learning method for restricted Bayesian classification networks is presented. Experiments and analysis are done using data sets from UCI machine learning repository. The results show that the restricted Bayesian classification network is more accurate than other well-known classifiers.  相似文献   

2.
We present a continuous variable Bayesian networks modeling framework that integrates the graphical representation of a Bayesian networks model with empirical model-developing approach. Our model retains the Bayesian networks model's graphical representation of hypothesized causal connections among important variables and employs conventional statistical modeling approaches for establishing functional relationships among these variables. The modeling framework avoids discretizing continuous variables and the resulting models can be updated over time when new data are available or updated using local data to develop a site-specific model. We illustrate the modeling approach using a data for establishing nutrient criteria in streams and rivers in Ohio, U.S.A.  相似文献   

3.
Bayes网络学习的MCMC方法   总被引:3,自引:0,他引:3  
基于Bayes统计理论, 提出了一种从数据样本中学习Bayes网络的Markov链Monte Carlo(MCMC)方法. 首先通过先验概率和数据样本的结合得到未归一化的后验概率, 然后使用此后验概率指导随机搜索算法寻找“好”的网络结构模型. 通过对Alarm网络的学习表明了本算法具有较好的性能.  相似文献   

4.
Bayesian networks (BNs) have been widely used in causal analysis because they can express the statistical relationship between significant variables. To gain superior causal analysis results, numerous studies have emphasized the importance of combining a knowledge‐based approach and a data‐based approach. However, combining these two approaches is a difficult task because it can reduce the effectiveness of the BN structure learning. Further, the learning schemes of BNs for computational efficiency can cause an inadequate causal analysis. To address these problems, we propose a knowledge‐driven BN structure calibration algorithm for rich causal semantics. We first present an algorithm that can efficiently identify the subnetworks that can be altered to satisfy the learning condition of the BNs. We then reflect experts' knowledge to reduce erroneous causalities from the learned network. Experiments on various simulation and benchmark data sets were conducted to examine the properties of the proposed method and to compare its performance with an existing method. Further, an experimental study with real data from semiconductor fabrication plants demonstrated that the proposed method provided superior performance in improving structural accuracy.  相似文献   

5.
In this article we describe an important structure used to model causal theories and a related problem of great interest to semi-empirical scientists. A causal Bayesian network is a pair consisting of a directed acyclic graph (called a causal graph) that represents causal relationships and a set of probability tables, that together with the graph specify the joint probability of the variables represented as nodes in the graph. We briefly describe the probabilistic semantics of causality proposed by Pearl for this graphical probabilistic model, and how unobservable variables greatly complicate models and their application. A common question about causal Bayesian networks is the problem of identifying causal effects from nonexperimental data, which is called the identifability problem. In the basic version of this problem, a semi-empirical scientist postulates a set of causal mechanisms and uses them, together with a probability distribution on the observable set of variables in a domain of interest, to predict the effect of a manipulation on some variable of interest. We explain this problem, provide several examples, and direct the readers to recent work that provides a solution to the problem and some of its extensions. We assume that the Bayesian network structure is given to us and do not address the problem of learning it from data and the related statistical inference and testing issues.  相似文献   

6.
新的贝叶斯网络结构学习方法   总被引:3,自引:0,他引:3  
贝叶斯网络是一种将贝叶斯概率方法和有向无环图的网络拓扑结构有机结合的表示模型,它描述了数据项及数据项之间的非线性依赖关系.报告了贝叶斯网络研究的现状,并针对传统算法需要主观规定网络中结点顺序的缺点,提出了一个新的可以在无约束条件下,根据观测得到的训练样本集的概率关系,自动完成学习贝叶斯网络结构的新方法.  相似文献   

7.
A Bayesian network is a powerful graphical model. It is advantageous for real-world data analysis and finding relations among variables. Knowledge presentation and rule generation, based on a Bayesian approach, have been studied and reported in many research papers across various fields. Since a Bayesian network has both causal and probabilistic semantics, it is regarded as an ideal representation to combine background knowledge and real data. Rare event predictions have been performed using several methods, but remain a challenge. We design and implement a Bayesian network model to forecast daily ozone states. We evaluate the proposed Bayesian network model, comparing it to traditional decision tree models, to examine its utility.  相似文献   

8.
贝叶斯网络结构模型的构建   总被引:1,自引:0,他引:1  
贝叶斯网络结构是一种将贝叶斯概率方法和有向无环图的网络拓扑结构有机结合的表示模型,它描述了数据项及其依赖关系,并根据各个变量之间概率关系建立图论模型,但是如何获取具有丢失数据的网络结构是一个急需解决的问题.本文提出一个基于Kullback-Leibler(KL)散度的贝叶斯网络结构学习的KLBN(Kullback-Leibler Bayesian Network)算法.实验结果表明,KLBN算法在可靠性方面明显优于传统的具有丢失数据的贝叶斯网络结构学习算法.  相似文献   

9.
贝叶斯学习,贝叶斯网络与数据采掘   总被引:16,自引:1,他引:15  
自从50~60年代贝叶斯学派形成后,关于贝叶斯分析的研究久盛不衰。早在80年代,贝叶斯网络就成功地应用于专家系统,成为表示不确定性专家知识和推理的一种流行方法。90年代以来,贝叶斯学习一直是机器学习研究的重要方向。由于概率统计与数据采掘的  相似文献   

10.
Xintao  Yong   《Pattern recognition》2006,39(12):2439-2449
DNA microarray provides a powerful basis for analysis of gene expression. Bayesian networks, which are based on directed acyclic graphs (DAGs) and can provide models of causal influence, have been investigated for gene regulatory networks. The difficulty with this technique is that learning the Bayesian network structure is an NP-hard problem, as the number of DAGs is superexponential in the number of genes, and an exhaustive search is intractable. In this paper, we propose an enhanced constraint-based approach for causal structure learning. We integrate with graphical Gaussian modeling and use its independence graph as an input of our constraint-based causal learning method. We also present graphical decomposition techniques to further improve the performance. Our enhanced method makes it feasible to explore causal interactions among genes interactively. We have tested our methodology using two microarray data sets. The results show that the technique is both effective and efficient in exploring causal structures from microarray data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号