首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Topology optimization methods application for viscous flow problems is currently an active area of research. A general approach to deal with shape and topology optimization design is based on the topological derivative. This relatively new concept represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations, such as holes and inclusions. In previous topological derivative-based formulations for viscous fluid flow problems, the topology is obtained by nucleating and removing holes in the fluid domain which creates numerical difficulties to deal with the boundary conditions for these holes. Thus, we propose a topological derivative formulation for fluid flow channel design based on the concept of traditional topology optimization formulations in which solid or fluid material is distributed at each point of the domain to optimize the cost function subjected to some constraints. By using this idea, the problem of dealing with the hole boundary conditions during the optimization process is solved because the asymptotic expansion is performed with respect to the nucleation of inclusions – which mimic solid or fluid phases – instead of inserting or removing holes in the fluid domain, which allows for working in a fixed computational domain. To evaluate the formulation, an optimization problem which consists in minimizing the energy dissipation in fluid flow channels is implemented. Results from considering Stokes and Navier-Stokes are presented and compared, as well as two- (2D) and three-dimensional (3D) designs. The topologies can be obtained in a few iterations with well defined boundaries.  相似文献   

2.

The goal of this paper is to introduce local length scale control in an explicit level set method for topology optimization. The level set function is parametrized explicitly by filtering a set of nodal optimization variables. The extended finite element method (XFEM) is used to represent the non-conforming material interface on a fixed mesh of the design domain. In this framework, a minimum length scale is imposed by adopting geometric constraints that have been recently proposed for density-based topology optimization with projections filters. Besides providing local length scale control, the advantages of the modified constraints are twofold. First, the constraints provide a computationally inexpensive solution for the instabilities which often appear in level set XFEM topology optimization. Second, utilizing the same geometric constraints in both the density-based topology optimization and the level set optimization enables to perform a more unbiased comparison between both methods. These different features are illustrated in a number of well-known benchmark problems for topology optimization.

  相似文献   

3.
Multi-material topology optimization is a practical tool that allows for improved structural designs. However, most studies are presented in the context of continuum topology optimization – few studies focus on truss topology optimization. Moreover, most work in this field has been restricted to linear material behavior with limited volume constraint settings for multiple materials. To address these issues, we propose an efficient multi-material topology optimization formulation considering material nonlinearity. The proposed formulation handles an arbitrary number of candidate materials with flexible material properties, features freely specified material layers, and includes a generalized volume constraint setting. To efficiently handle such arbitrary volume constraints, we derive a design update scheme that performs robust updates of the design variables associated with each volume constraint independently. The derivation is based on the separable feature of the dual problem of the convex approximated primal subproblem with respect to the Lagrange multipliers, and thus the update of design variables in each volume constraint only depends on the corresponding Lagrange multiplier. Through examples in 2D and 3D, using combinations of Ogden-based, bilinear, and linear materials, we demonstrate that the proposed multi-material topology optimization framework with the presented update scheme leads to a design tool that not only finds the optimal topology but also selects the proper type and amount of material. The design update scheme is named ZPR (phonetically, zipper), after the initials of the authors’ last names (Zhang-Paulino-Ramos Jr.).  相似文献   

4.
A new methodology for making design decisions of structures using multi-material optimum topology information is presented. Multi-material analysis contributes significant applications to enhance the bearing capacity and performance of structures. A method that chooses an appropriate material combination satisfying design stiffness requirement economically is currently needed. An alternative method of making design-decision is to utilize a multi-material topology optimization (MMTO) approach. This study provides a new computational design optimization procedure as a guideline to find the optimal multi-material design by considering structure strain energy and material cost. The MMTO problem is analyzed using an alternative active-phase approach. The procedure consists of three design steps. First, steel grid configurations and composite with material properties are defined as a given structure for automatic design decision-making (DDM). And then design criteria of the steel composites structure is given to be limited strain energy by designers and engineers. Second, topology changes in the automatic distribution of multi-steel materials combination and volume control of each material during optimization procedures are achieved and at the same time, their converged minimal strain energy is produced for each material combination. And third, the strain energy and material cost which is computed based on the material ratio in the combinations are used as design decision parameters. A study in constructional steel composites to produce optimal and economical multi-material designs demonstrates the efficiency of the present DDM methodology.  相似文献   

5.
Topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. The objective of this type of approach is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (that is, the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. This paper presents a different strategy to deal with topology optimization: a minimum weight with stress constraints Finite Element formulation for the topology optimization of continuum structures. We propose two different approaches in order to take into account stress constraints in the optimization formulation. The local approach of the stress constraints imposes stress constraints at predefined points of the domain (i.e. at the central point of each element). On the contrary, the global approach only imposes one global constraint that gathers the effect of all the local constraints by means of a certain so-called aggregation function. Finally, some application examples are solved with both formulations in order to compare the obtained solutions.  相似文献   

6.
Self-collimating phononic crystals (PCs) are periodic structures that enable self-collimation of waves. While various design parameters such as material property, period, lattice symmetry, and material distribution in a unit cell affect wave scattering inside a PC, this work aims to find an optimal material distribution in a unit cell that exhibits the desired self-collimation properties. While earlier studies were mainly focused on the arrangement of self-collimating PCs or shape changes of inclusions in a unit cell having a specific topological layout, we present a topology optimization formulation to find a desired material distribution. Specifically, a finite element based formulation is set up to find the matrix and inclusion material distribution that can make elastic shear-horizontal bulk waves propagate along a desired target direction. The proposed topology optimization formulation newly employs the geometric properties of equi-frequency contours (EFCs) in the wave vector space as essential elements in forming objective and constraint functions. The sensitivities of these functions with respect to design variables are explicitly derived to utilize a gradient-based optimizer. To show the effectiveness of the formulation, several case studies are considered.  相似文献   

7.
Considering stress-related objective or constraint functions in structural topology optimization problems is very important from both theoretical and application perspectives. It has been known, however, that stress-related topology optimization problem is challenging since several difficulties must be overcome in order to solve it effectively. Traditionally, SIMP (Solid Isotropic Material with Penalization) method was often employed to tackle it. Although some remarkable achievements have been made with this computational framework, there are still some issues requiring further explorations. In the present work, stress-related topology optimization problems are investigated via a level set-based approach, which is a different topology optimization framework from SIMP. Numerical examples show that under appropriate problem formulations, level set approach is a promising tool for stress-related topology optimization problems.  相似文献   

8.
Size-dependent optimal microstructure design based on couple-stress theory   总被引:1,自引:1,他引:0  
The purpose of this paper is to propose a size-dependent topology optimization formulation of periodic cellular material microstructures, based on the effective couple-stress continuum model. The present formulation consists of finding the optimal layout of material that minimizes the mean compliance of the macrostructure subject to the constraint of permitted material volume fraction. We determine the effective macroscopic couple-stress constitutive constants by analyzing a unit cell with specified boundary conditions with the representative volume element (RVE) method, based on equivalence of strain energy. The computational model is established by the finite element (FE) method, and the design density and FE stiffness of the RVE are related by the solid isotropic material with penalization power (SIMP) law. The required sensitivity formulation for gradient-based optimization algorithm is also derived. Numerical examples demonstrate that this present formulation can express the size effect during the optimization procedure and provide precise topologies without increase in computational cost.  相似文献   

9.
Isogeometric Analysis for Topology Optimization with a Phase Field Model   总被引:2,自引:0,他引:2  
We consider a phase field model for the formulation and solution of topology optimization problems in the minimum compliance case. In this model, the optimal topology is obtained as the steady state of the phase transition described by the generalized Cahn?CHilliard equation which naturally embeds the volume constraint on the amount of material available for distribution in the design domain. We reformulate the model as a coupled system and we highlight the dependency of the optimal topologies on dimensionless parameters. We consider Isogeometric Analysis for the spatial approximation which facilitates encapsulating the exactness of the representation of the design domain in the topology optimization and is particularly suitable for the analysis of phase field problems. We demonstrate the validity of the approach and numerical approximation by solving two and three-dimensional topology optimization problems.  相似文献   

10.
Hybrid additive-subtractive manufacturing is gaining popularity by making full use of geometry complexity produced by additive manufacturing and dimensional accuracy derived from subtractive machining. Part design for this hybrid manufacturing approach has been done by trial-and-error, and no dedicated design methodology exists for this manufacturing approach. To address this issue, this work presents a topology optimization method for hybrid additive and subtractive manufacturing. To be specific, the boundary segments of the input design domain are categorized into two types: (i) Freeform boundary segments freely evolve through the casting SIMP method, and (ii) shape preserved boundary segments suppress the freeform evolvement and are composed of machining features through a feature fitting algorithm. Given the manufacturing strategy, the topology design is produced through additive manufacturing and the shape preserved boundary segments will be processed by post-machining. This novel topology optimization algorithm is developed under a unified SIMP and level set framework. The effectiveness of the algorithm is proved through a few numerical case studies.  相似文献   

11.
When designing linear control systems, one of the most difficult problems is that the designer almost has no theoretical basis for the determination of proper parameters in order to obtain a system with desired specifications. Poles and directions of eigenvectors in the pole assignment method or weighting matrices of the quadratic criterion function in the optimal regulator method are such parameters. The designer has to determine them by trial-and-error using computer simulation. The purpose of this paper is to propose an approach to helping determine proper parameters in linear control system design by the state space methods. In the case where the desired specifications are not given explicitly, the approach applies an interactive optimization method called the Interactive Simplex method to search the most suitable parameters directly in the parameter space. But, if the specifications are given explicitly, the design problem can be formulated as a multiobjective optimization problem. In this case, weights which indicate relative importance of different specifications are introduced and the Interactive Simplex method is applied in the weight space to indirectly find the most appropriate parameters. The approach is implemented as part of a CAD system. The designer has only to make pairwise comparisons of response curves which are shown on a graphics display terminal in order to obtain the most preferred control system. Two illustrative examples are demonstrated to indicate the efficiency of the approach.  相似文献   

12.
Topology optimization problems require the repeated solution of finite element problems that are often extremely ill-conditioned due to highly heterogeneous material distributions. This makes the use of iterative linear solvers inefficient unless appropriate preconditioning is used. Even then, the solution time for topology optimization problems is typically very high. These problems are addressed by considering the use of non-overlapping domain decomposition-based parallel methods for the solution of topology optimization problems. The parallel algorithms presented here are based on the solid isotropic material with penalization (SIMP) formulation of the topology optimization problem and use the optimality criteria method for iterative optimization. We consider three parallel linear solvers to solve the equilibrium problem at each step of the iterative optimization procedure. These include two preconditioned conjugate gradient (PCG) methods: one using a diagonal preconditioner and one using an incomplete LU factorization preconditioner with a drop tolerance. A third substructuring solver that employs a hybrid of direct and iterative (PCG) techniques is also studied. This solver is found to be the most effective of the three solvers studied, both in terms of parallel efficiency and in terms of its ability to mitigate the effects of ill-conditioning. In addition to examining parallel linear solvers, we consider the parallelization of the iterative optimality criteria method. To tackle checkerboarding and mesh dependence, we propose a multi-pass filtering technique that limits the number of “ghost” elements that need to be exchanged across interprocessor boundaries.  相似文献   

13.
Two formulations for the design of the optimal insulation of a domain are investigated by computational means. The results illustrate the similarities and differences that result from the two approaches. One method is in the format of a topology design problem of distributing insulating material in a domain surrounding a non-design domain that is heated by a given heat source; this problem is treated in both a relaxed format and a penalized material format. The other approach deals with the optimal distribution of a thin layer of insulation on the boundary of the non-design domain; this problem is more in the realm of shape design, or rather, it is similar to optimal design of support conditions for structures. In both cases, mathematical programming is used, but for the shape design case, it is applied to the non-linear analysis problems that arise when the optimal design is explicitly solved for.  相似文献   

14.
Computational science and engineering are dominated by field problems. Traditionally, engineering practice involves repeated iterations of shape design (i.e., shaping and modeling of material properties), simulation of the physical field, evaluation of the result, and re-design. In this paper, we propose a specific interpretation of the algebraic-topological formulation of field problems, which is conceptually simple, physically sound, computational effective and comprehensive. In the proposed approach, physical information is attached to an adaptive, full-dimensional decomposition of the domain of interest. Giving preeminence to the cells of highest dimension allows us to generate the geometry and to simulate the physics simultaneously. We will also demonstrate that our formulation removes artificial constraints on the shape of discrete elements and unifies commonly unrelated methods in a single computational framework. This framework, by using an efficient graph-representation of the domain of interest, unifies several geometric and physical finite formulations, and supports local progressive refinement (and coarsening) effected only where and when required.  相似文献   

15.
This paper is devoted to minimum stress design in structural optimization. The homogenization method is extended to such a framework and yields an efficient numerical algorithm for topology optimization. The main idea is to use a partial relaxation of the problem obtained by introducing special microstructures which are sequential laminated composites. Indeed, the so-called corrector terms of such microgeometries are explicitly known, which allows us to compute the relaxed objective function. These correctors can be interpreted as stress amplification factors, caused by the underlying microstructure.  相似文献   

16.
Piezoresistive sensor design using topology optimization   总被引:2,自引:2,他引:0  
Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.  相似文献   

17.
Including stability in truss topology optimization is critical to avoid unstable optimized designs in practical applications. While prior research addresses this challenge by implementing local buckling and linear prebuckling, numerical difficulties remain due to the global stability singularity phenomenon. Therefore, the goal of this paper is to develop an optimization formulation for truss topology optimization including global stability without numerical singularities, within the framework of the preliminary design of large-scale structures. This task is performed by considering an appropriate simultaneous analysis and design formulation, in which the use of a disaggregated form for the equilibrium equations alleviates the singularities inherent to global stability. By implementing a local buckling criterion for hollow truss elements, the resulting formulation is well-suited for the preliminary design of large-scale trusses in civil engineering applications. Three applications illustrate the efficiency of the proposed approach, including a benchmark truss structure and the preliminary design of a footbridge and a dome. The results demonstrate that including local buckling and global stability can considerably affect the optimized design, while offering a systematic means of avoiding unstable solutions. It is also shown that the proposed approach is in a good agreement with linear prebuckling assumptions.  相似文献   

18.
Parallel computing is an integral part of many scientific disciplines. In this paper, we discuss issues and difficulties arising when a state-of-the-art parallel linear solver is applied to topology optimization problems. Within the topology optimization framework, we cannot readjust domain decomposition to align with material decomposition, which leads to the deterioration of performance of the substructuring solver. We illustrate the difficulties with detailed condition number estimates and numerical studies. We also report the practical performances of finite element tearing and interconnection/dual–primal solver for topology optimization problems and our attempts to improve it by applying additional scaling and/or preconditioning strategies. The performance of the method is finally illustrated with large-scale topology optimization problems coming from different optimal design fields: compliance minimization, design of compliant mechanisms, and design of elastic surface wave-guides. The authors acknowledge the support of the Air Force Office of Scientific Research (AFOSR) under grant FA9550-05-1-0046. The computational facility was obtained under the grant AFOSR-DURIP FA9550-05-1-0291.  相似文献   

19.
Many problems in structural optimization can be formulated as a minimization of the maximum eigenvalue of a symmetric matrix. In practise it is often observed that the maximum eigenvalue has multiplicity greater than one close to or at optimal solutions. In this note we give a sufficient condition for this to happen at extreme points in the optimal solution set. If, as in topology optimization, each design variable determines the amount of material in a finite element in the design domain then this condition essentially amounts to saying that the number of elements containing material at a solution must be greater than the order of the matrix.  相似文献   

20.
A heterogeneous object is referred to as a solid object made of different constituent materials. The object is of a finite collection of regions of a set of prescribed material classes of continuously varying material properties. These properties have a discontinuous change across the interface of the material regions. In this paper, we propose a level-set based variational approach for the design of this class of heterogeneous objects. Central to the approach is a variational framework for a well-posed formulation of the design problem. In particular, we adapt the Mumford-Shah model which specifies that any point of the object belongs to either of two types: inside a material region of a well-defined gradient or on the boundary edges and surfaces of discontinuities. Furthermore, the set of discontinuities is represented implicitly, using a multi-phase level set model. This level-set based variational approach yields a computational system of coupled geometric evolution and diffusion partial differential equations. Promising features of the proposed method include strong regularity in the problem formulation and inherent capabilities of geometric and material modeling, yielding a common framework for optimization of the heterogeneous objects that incorporates dimension, shape, topology, and material properties. The proposed method is illustrated with several 2D examples of optimal design of multi-material structures and materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号