首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.  相似文献   

2.
We propose a simple modification of standard weighted essentially non-oscillatory (WENO) finite volume methods for Cartesian grids, which retains the full spatial order of accuracy of the one-dimensional discretization when applied to nonlinear multidimensional systems of conservation laws. We derive formulas, which allow us to compute high-order accurate point values of the conserved quantities at grid cell interfaces. Using those point values, we can compute a high-order flux at the center of a grid cell interface. Finally, we use those point values to compute high-order accurate averaged fluxes at cell interfaces as needed by a finite volume method. The method is described in detail for the two-dimensional Euler equations of gas dynamics. An extension to the three-dimensional case as well as to other nonlinear systems of conservation laws in divergence form is straightforward. Furthermore, similar ideas can be used to improve the accuracy of WENO type methods for hyperbolic systems which are not in divergence form. Several test computations confirm the high-order accuracy for smooth nonlinear problems.  相似文献   

3.
In this paper we focus on the application of a higher-order finite volume method for the resolution of Computational Aeroacoustics problems. In particular, we present the application of a finite volume method based in Moving Least Squares approximations in the context of a hybrid approach for low Mach number flows. In this case, the acoustic and aerodynamic fields can be computed separately. We focus on two kinds of computations: turbulent flow and aeroacoustics in complex geometries. Both fields require very accurate methods to capture the fine features of the flow, small scales in the case of turbulent flows and very low-amplitude acoustic waves in the case of aeroacoustics. On the other hand, the use of unstructured grids is interesting for real engineering applications, but unfortunately, the accuracy and efficiency of the numerical methods developed for unstructured grids is far to reach the performance of those methods developed for structured grids. In this context, we propose the FV-MLS method as a tool for accurate CAA computations on unstructured grids.  相似文献   

4.
The solution of large, sparse linear systems is often a dominant phase of computation for simulations based on partial differential equations, which are ubiquitous in scientific and engineering applications. While preconditioned Krylov methods are widely used and offer many advantages for solving sparse linear systems that do not have highly convergent, geometric multigrid solvers or specialized fast solvers, Krylov methods encounter well-known scaling difficulties for over 10,000 processor cores because each iteration requires at least one vector inner product, which in turn requires a global synchronization that scales poorly because of internode latency. To help overcome these difficulties, we have developed hierarchical Krylov methods and nested Krylov methods in the PETSc library that reduce the number of global inner products required across the entire system (where they are expensive), though freely allow vector inner products across smaller subsets of the entire system (where they are inexpensive) or use inner iterations that do not invoke vector inner products at all.  相似文献   

5.
A new accurate numerical method based on the constrained interpolation profile (CIP) method to solve the Schrödinger wave equation for bound and free states in central fields and to calculate radial integrals is presented. The radial wave equation is integrated on an arbitrary grid system by the adaptive stepsize controlled Runge-Kutta method controlling the truncation errors within a prescribed accuracy. For the continuum orbitals in the highly oscillating region, the non-linear radial wave equation in the phase-amplitude representation is used. In the evaluation of the derivatives of the radial wave function, the potential energy is approximated by the CIP method. In addition, the radial integrals encountered in the computation of various atomic process are accomplished with the CIP method using the values and their analytical derivatives at the grids. This numerical procedure can be extended in a straightforward way to solve the Dirac wave equation.  相似文献   

6.
In this article, an efficient sub‐gridding finite‐difference time‐domain is developed for the simulation of multiscaled electromagnetic problems. The proposed technique is based on using the Huygens surfaces for interfacing electromagnetic fields between different grids. The use of the Object Oriented Programming for modeling FDTD simulations facilitates the imbrication of multiple sub‐grids. That heightens the spatial ratio without affecting the accuracy and stability of the sub‐gridding technique. Spatiotemporal interpolation is used to evaluate the electromagnetic fields in Huygens surface location among the coarse grid. Results of numerical experiments prove that the use of imbricated sub‐grids and spatiotemporal interpolation in the Huygens sub‐gridding is more efficient than the use of a single sub‐grid with only spatial interpolation.  相似文献   

7.
In this work, a finite difference method to solve the incompressible Navier-Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.  相似文献   

8.
《国际计算机数学杂志》2012,89(12):2104-2121
In this paper, we develop a highly accurate adaptive finite difference (FD) discretization for the Black–Scholes equation. The final condition is discontinuous in the first derivative yielding that the effective rate of convergence in space is two, both for low-order and high-order standard FD schemes. To obtain a method that gives higher accuracy, we use an extra grid in a limited space- and time-domain. This new method is called FD6G2. The FD6G2 method is combined with space- and time-adaptivity to further enhance the method. To obtain solutions of high accuracy, the adaptive FD6G2 method is superior to both a standard and an adaptive second-order FD method.  相似文献   

9.
The discrete Poisson equation used to enforce incompressibility in the projection method of Chorin has a null space. The null space often manifests itself in producing solutions with checkerboard pressure fields. The staggering of variables by Harlow and Welch effectively eliminates the null space; however, when it is used in the context of curvilinear coordinates its consistent implementation is complicated because it requires the use of contravariant velocity components and variable coordinate base vectors. In this paper we present and analyze a null-space-free approximate projection method, which is based on cartesian vector components and non-staggered grids. The approximate projection method has been implemented in the computer code HEMO. Several examples of two-and three-dimensional flows using HEMO are presented.  相似文献   

10.
In this note we present a local tangential lifting (LTL) algorithm to compute differential quantities for triangular meshes obtained from regular surfaces. First, we introduce a new notation of the local tangential polygon and lift functions and vector fields on a triangular mesh to the local tangential polygon. Then we use the centroid weights proposed by Chen and Wu [4] to define the discrete gradient of a function on a triangular mesh. We also use our new method to define the discrete Laplacian operator acting on functions on triangular meshes. Higher order differential operators can also be computed successively. Our approach is conceptually simple and easy to compute. Indeed, our LTL method also provides a unified algorithm to estimate the shape operator and curvatures of a triangular mesh and derivatives of functions and vector fields. We also compare three different methods : our method, the least square method and Akima’s method to compute the gradients of functions.  相似文献   

11.
In this note we present a local tangential lifting (LTL) algorithm to compute differential quantities for triangular meshes obtained from regular surfaces. First, we introduce a new notation of the local tangential polygon and lift functions and vector fields on a triangular mesh to the local tangential polygon. Then we use the centroid weights proposed by Chen and Wu [4] to define the discrete gradient of a function on a triangular mesh. We also use our new method to define the discrete Laplacian operator acting on functions on triangular meshes. Higher order differential operators can also be computed successively. Our approach is conceptually simple and easy to compute. Indeed, our LTL method also provides a unified algorithm to estimate the shape operator and curvatures of a triangular mesh and derivatives of functions and vector fields. We also compare three different methods : our method, the least square method and Akima’s method to compute the gradients of functions.  相似文献   

12.
Lion's nonoverlapping Schwarz domain decomposition method based on a finite difference discretization is applied to problems with fronts or layers. For the purpose of getting accurate approximation of the solution by solving small linear systems, grid refinement is made on subdomains that contain fronts and layers and uniform coarse grids are applied on subdomains in which the solution changes slowly and smoothly. In order to balance loads among different processors, we employ small subdomains with fine grids for rapidly-changing-solution areas, and big subdomains with coarse grids for slowly-changing-solution areas. Numerical implementations in the SPMD mode on an nCUBE2 machine are conducted to show the efficiency and accuracy of the method.  相似文献   

13.
Lagrangian coherent structures (LCSs) have become a widespread and powerful method to describe dynamic motion patterns in time‐dependent flow fields. The standard way to extract LCS is to compute height ridges in the finite‐time Lyapunov exponent field. In this work, we present an alternative method to approximate Lagrangian features for 2D unsteady flow fields that achieve subgrid accuracy without additional particle sampling. We obtain this by a geometric reconstruction of the flow map using additional material constraints for the available samples. In comparison to the standard method, this allows for a more accurate global approximation of LCS on sparse grids and for long integration intervals. The proposed algorithm works directly on a set of given particle trajectories and without additional flow map derivatives. We demonstrate its application for a set of computational fluid dynamic examples, as well as trajectories acquired by Lagrangian methods, and discuss its benefits and limitations.  相似文献   

14.
In this paper, we studied the relationship between the accuracy of the extrapolating data and the update interval in a distributed virtual environment (DVE). Based on the properties of the polynomial models, we proposed the new method to extrapolate the attribute data which arrives at a discrete time period. Theoretical models were formulated and showed that the average error of the proposed method is less than that of current methods. Finally, we confirmed that the proposed method can improve the accuracy in comparison with current methods by conducting experiments with the motion of a pen for a series of letters written by a human.  相似文献   

15.
A new method for finding the locus of parallel vectors is presented, called PVsolve. A parallel-vector operator has been proposed as a visualization primitive, as several features can be expressed as the locus of points where two vector fields are parallel. Several applications of the idea have been reported, so accurate and efficient location of such points is an important problem. Previously published methods derive a tangent direction under the assumption that the two vector fields are parallel at the current point in space, then extend in that direction to a new point. PVsolve includes additional terms to allow for the fact that the two vector fields may not be parallel at the current point, and uses a root-finding approach. Mathematical analysis sheds new light on the feature flow field technique (FFF) as well. The root-finding property allows PVsolve to use larger step sizes for tracing parallel-vector curves, compared to previous methods, and does not rely on sophisticated differential equation techniques for accuracy. Experiments are reported on fluid flow simulations, comparing FFF and PVsolve.  相似文献   

16.
探讨基于支持向量机的高分辨率遥感图像中某型号飞机的检测识别问题.提出将小波变换结合灰度共生矩阵法提取目标样本信息特征的一种新方法,通过对Brodatz纹理进行测试,实验表明该方法有效提高了纹理分类识别率.此外,将支持向量机方法运用于遥感图像目标识别中,用分块区域搜索的方法检测到目标所在区域,实现对目标的检测识别.试验表明,该方法快速、高效且具备一定的鲁棒性.  相似文献   

17.
In this paper, we study the stability and accuracy of adaptive finite element methods for the convection-dominated convection-diffusion-reaction problem in the two-dimension space. Through various numerical examples on a type of layer-adapted grids (Shishkin grids), we show that the mesh adaptivity driven by accuracy alone cannot stabilize the scheme in all cases. Furthermore the numerical approximation is sensitive to the symmetry of the grid in the region where the solution is smooth. On the basis of these two observations, we develop a multilevel-homotopic-adaptive finite element method (MHAFEM) by combining streamline diffusion finite element method, anisotropic mesh adaptation, and the homotopy of the diffusion coefficient. We use numerical experiments to demonstrate that MHAFEM can efficiently capture boundary or interior layers and produce accurate solutions.  相似文献   

18.
We propose a method with sixth-order accuracy to solve the three-dimensional (3D) convection diffusion equation. We first use a 15-point fourth-order compact discretization scheme to obtain fourth-order solutions on both fine and coarse grids using the multigrid method. Then an iterative mesh refinement technique combined with Richardson extrapolation is used to approximate the sixth-order accurate solution on the fine grid. Numerical results are presented for a variety of test cases to demonstrate the efficiency and accuracy of the proposed method, compared with the standard fourth-order compact scheme.  相似文献   

19.
We investigate the use of splitting methods for the numerical integration of three-dimensional transport-chemistry models. In particular, we investigate various possibilities for the time discretization that can take advantage of the parallelization and vectorization facilities offered by multi-processor vector computers. To suppress wiggles in the numerical solution, we use third-order, upwind-biased discretization of the advection terms, resulting in a five-point coupling in each direction. As an alternative to the usual splitting functions, such as co-ordinate splitting or operator splitting, we consider a splitting function that is based on a three-coloured hopscotch-type splitting in the horizontal direction, whereas full coupling is retained in the vertical direction. Advantages of this splitting function are the easy application of domain decomposition techniques and unconditional stability in the vertical, which is an important property for transport in shallow water. The splitting method is obtained by combining the hopscotch-type splitting function with various second-order splitting formulae from the literature. Although some of the resulting methods are highly accurate, their stability behaviour (due to horizontal advection) is quite poor. Therefore we also discuss several new splitting formulae with the aim to improve the stability characteristics. It turns out that this is possible indeed, but the price to pay is a reduction of the accuracy. Therefore, such methods are to be preferred if accuracy is less crucial than stability; such a situation is frequently encountered in solving transport problems. As part of the project TRUST (Transport and Reactions Unified by Splitting Techniques), preliminary versions of the schemes are implemented on the Cray C98 4256 computer and are available for benchmarking.  相似文献   

20.
High order finite difference methods obeying a summation-by-parts (SBP) rule are developed for equidistant grids. With curvilinear grids, a coordinate transformation operator that does not destroy the SBP property must be used. We show that it is impossible to construct such an operator without decreasing the order of accuracy of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号