共查询到17条相似文献,搜索用时 62 毫秒
1.
本文提出了跟踪三维空中机动目标的一种新方法,在这种方法中,未知的目标加速度被认为是具有非零均值、时间相关的随机过程并将它的概率密度函数假定为截断正态型。借助于切比雪夫(Chebyshev)不等式来确定目标随机加速度的均值和方差之间的关系。理论分析和仿真结果表明,由作者们提出的模型和算法去跟踪恒加速目标时稳态偏差为零,从而消除了R.A.Singer方法在跟踪恒加速度目标时所存在的稳态偏差。给出了计算机仿真结果。截断正态概率密度模型和自适应算法适合于跟踪高度机动目标并且易于实现。 相似文献
2.
Singer模型是典型的全局统计模型,其严重缺陷在于所采用的零均值时间相关模型和标准卡尔曼滤波算法不能完成对机动目标状态的正确估计1只有当目标做匀速直线运动时,动态误差的稳态值才为零,否则不为零;采用PF—Singer算法对机动目标进行跟踪。能够有效解决传统Singer模型存在的问题,提高其跟踪精度;通过仿真试验证实了该算法的有效性。 相似文献
3.
在目标被遮挡条件下的自动预测跟踪中,研究了跟踪机动目标过程中的角位置自适应卡尔曼预测算法。针对估计与预算中出现的发散现象,推导了导引头框架角位置预测方法。建立了目标遮挡预测跟踪测试系统,设计多种不同的目标运动形式,并通过转台实现,测试改进的自适应位置预测算法在典型测试条件下的有效性和准确程度。实验结果表明:当目标进入遮挡区域时,改进的自适应位置预测算法能够有效地实现预测跟踪,保证目标退出遮挡时能够顺利重新捕获和跟踪。 相似文献
4.
5.
以WGS-84标准的地心坐标系作为统一坐标系,通过建立机动目标的跟踪模型,实时预测机动目标的轨迹,并提出了机动目标的跟踪与反跟踪策略。首先考虑了单目标跟踪问题,提出了基于改进的MeanShift算法的目标跟踪模型,使用此模型提取聚类点,并对这些聚类点进行B样条曲线拟合,得到光滑的航迹。其次考虑了两目标跟踪问题,建立了基于最近邻及改进MeanShift算法的目标跟踪模型,利用最小二乘法对航迹数据进行二次曲线拟合,分析机动目标加速度变化规律,并通过判断拟合曲线上的点与球面位置关系,提出了两种着落点预测方法。最后分析了机动目标如何反雷达跟踪的问题,提出了反跟踪策略。 相似文献
6.
本文研究了支持向量回归(SVR)在机动目标跟踪中的应用,并与传统回归方法最小二乘法(LS)进行了比较。实验结果表明,利用支持向量回归可以以很高的精度对机动目标进行跟踪,并且有着很强的适应能力,是一种有潜力的跟踪方法。 相似文献
7.
基于粒子滤波的机动目标跟踪 总被引:1,自引:0,他引:1
在单机动目标跟踪中,目标的机动情况是未知的,提出的算法用粒子滤波器求加速度的估计,由Kalman滤波得到加速度的重要性概率密度函数。仿真实验结果表明,该算法可较好地跟踪目标状态(包括加速度)的变化。 相似文献
8.
9.
10.
11.
12.
基于分类模型的目标跟踪算法采用分类模型实现对多目标的跟踪。在传统算法中目标跟踪的对象是每个传感器的实时采样,而在分类模型中将传感器采样根据分类规则进行分类。然后将类的特征作为一个新的采样为下一层的模型提供输入,可以减少计算的复杂度。该模型是一个可扩展模型,可以为分类器设计不同的算法对模型进行扩展。模型自身采用低耦合的层次化设计,每一层均可以采用不同的分类器,这样可以充分利用各种分类算法的优点。 相似文献
13.
14.
15.
16.