首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 953 毫秒

1.  关系tri-training:利用无标记数据学习一阶规则  
   李艳娟  郭茂祖《计算机科学与探索》,2012年第5期
   针对目前归纳逻辑程序设计(inductive logic programming,ILP)系统要求训练数据充分且无法利用无标记数据的不足,提出了一种利用无标记数据学习一阶规则的算法——关系tri-training(relational-tri-training,R-tri-training)算法。该算法将基于命题逻辑表示的半监督学习算法tri-training的思想引入到基于一阶逻辑表示的ILP系统,在ILP框架下研究如何利用无标记样例信息辅助分类器训练。R-tri-training算法首先根据标记数据和背景知识初始化三个不同的ILP系统,然后迭代地用无标记样例对三个分类器进行精化,即如果两个分类器对一个无标记样例的标记结果一致,则在一定条件下该样例将被标记给另一个分类器作为新的训练样例。标准数据集上实验结果表明:R-tri-training能有效地利用无标记数据提高学习性能,且R-tri-training算法性能优于GILP(genetic inductive logic programming)、NFOIL、KFOIL和ALEPH。    

2.  基于特征变换的Tri-Training算法  
   赵文亮  郭华平  范 明《计算机工程》,2014年第5期
   提出一种基于特征变换的Tri Training算法。通过特征变换将已标记实例集映射到新空间,得到有差异的训练集,从而构建准确又存在差异的基分类器,避免自助采样不能充分利用全部已标记实例集的问题。为充分利用数据类分布信息,设计基于Must link和Cannot link约束集合的特征变换方法(TMC),并将其用于基于特征变换的Tri Training算法中。在UCI数据集上的实验结果表明,在不同未标记率下,与经典的Co Training、Tri Trainng算法相比,基于特征变换的Tri Training算法可在多数数据集上得到更高的准确率。此外,与Tri LDA和Tri CP算法相比,基于TMC的Tri Training算法具有更好的泛化性能。    

3.  基于Tri-Training半监督分类算法的研究  
   张雁  吕丹桔  吴保国《计算机技术与发展》,2013年第23卷第7期
   在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点.文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析.实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点.    

4.  基于Tri-Training半监督分类算法的研究  
   张雁  吕丹桔  吴保国《微机发展》,2013年第7期
   在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。    

5.  基于统计证据的半监督多分类器融合方法  
   孔志周  蔡自兴《控制与决策》,2011年第26卷第11期
   针对半监督学习中未标记示例导致性能下降的问题,提出一种新的协同训练算法LDL-tri-training.首先通过最小显著性差异(LSD)假设检验方法使得3个成员分类器两两之间具有显著性差异;然后采用D-S证据理论提高标注的稳定性;最后利用局部异常因子检测算法剔除误标记的噪声样本.实验表明,与其他方法相比,LDL-tri-training算法具有较高的分类精度和稳定性.    

6.  基于Tri-Training和数据剪辑的半监督聚类算法  被引次数:2
   邓 超  郭茂祖《软件学报》,2008年第19卷第3期
   提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能.    

7.  一种自适应的Tri-Training半监督算法  
   彭雅琴  宫宁生《计算机系统应用》,2016年第25卷第8期
   Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能.    

8.  基于随机子空间的半监督协同训练算法  被引次数:3
   王娇  罗四维  曾宪华《电子学报》,2008年第36卷第Z1期
    半监督学习是近年来的一个研究热点.协同训练(co-training)是利用未标记数据来提高传统监督学习性能的一种半监督学习范式.本文提出一种基于随机子空间的协同训练算法(RAndom Subspace CO-training,简称为RAS-CO).该算法探讨多视图的协同训练.用随机判别的理论分析了算法的分类精度和泛化能力.讨论了随机子空间的维数和个数对分类性能的影响.在UCI数据集上的实验结果表明,与其它同类算法相比,RASCO算法有较好的性能.    

9.  基于Tri-training的评价单元识别  
   蒋 润  顾春华  阮 彤《计算机应用》,2014年第4期
   评价单元的识别是情感倾向性分析中重要的一步,但由于标注语料匮乏,大多数研究集中在用人工构建规则、模板来识别评价单元的方法上。为了减轻标注训练语料的工作,同时进一步挖掘未标记样本的信息,提出一种基于协同训练机制的评价单元识别算法,以利用少量的已标记样本和大量的未标记样本来提高识别性能。该算法利用Tri-training的思想,将支持向量机(SVM)、最大熵(MaxEnt)以及条件随机场(CRF)三个不同分类器组合成一个分类体系,对生成的评价单元候选集进行分类。将Tri-training的算法思想应用于实验来对比采用单一分类器的方法,结果表明,该算法能够有效地识别主观句中的评价单元。    

10.  基于半监督学习的跌倒检测系统设计  
   李仲年  臧春华  杨刚  项嵘《传感器与微系统》,2016年第10期
   针对老人跌倒时的复杂运动情况,进行跌倒标注的较难实现,提出了基于Tri-training半监督算法的跌倒检测系统。本系统使用3D加速度传感器采集运动加速度数据,然后对数据进行特征提取与部分样本标注,使用Tri-training算法训练分类器,最后使用训练好的分类器进行跌倒识别。具体的数据采集传感器设计为可穿戴式设备,服务器端使用Java编写了一个服务器的程序实现对数据的分析与处理。实验结果表明:该方法使用了大量无标签数据的信息,有效提高了跌倒识别的准确率。实验结果表明:本系统能够满足老年人在日常生活中的需求,对于一些意外跌倒能够给予及时的检测与报警。    

11.  基于Tri—Training算法的数据编辑技术  
   张雁  林英  吕丹桔《计算机与数字工程》,2013年第41卷第10期
   Tri-Training是一种半监督学习算法,在少量标记数据下,通过三个不同的分类器,从未标记样本中采样并标记新的训练数据,作为各分类器训练数据的有效补充。但由于错误标记样本的存在,引入了噪音数据,降低了分类的性能。论文在Tri—Training算法中分别采用DE-KNN,DE-BKNN和DE-NED三种数据编辑技术,识别移除误标记的数据。通过对六组UCI数据集的实验,分析结果表明,编辑技术的引入是有效的,三种方法的使用在一定程度上提升了Tri-Training算法的分类性能,尤其是DE-NED方法更为显著。    

12.  基于Tri-training算法的构造性学习方法  
   吴涛  李萍  王允强《计算机工程》,2012年第38卷第6期
   构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri- training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。    

13.  利用Tri-training算法解决推荐系统冷启动问题  
   张栩晨《计算机科学》,2016年第43卷第12期
   随着社交网络的发展,推荐系统日趋重要,而冷启动问题是推荐系统中的关键问题。设计了一种基于上下文的半监督学习框架TSEL,对矩阵分解模型SVD进行扩充以支持更多形式的上下文信息,利用Tri-training框架训练各个模型。与其他解决推荐系统冷启动问题的半监督方法(如Co- training)相比,该方法有着更好的效果。Tri-training框架能够更加方便地引入更多推荐模型,具有更好的可扩展性。将Tri-training框架加以 扩展,提出了基于用户活跃度生成无标记教学集合的算法和更加丰富的对矩阵分解模型扩充的形式。在真实数据集MovieLens上进行验证,获得了更好的实验效果。    

14.  基于Tri-training的半监督SVM  被引次数:1
   李昆仑  张伟  代运娜《计算机工程与应用》,2009年第45卷第22期
   当前机器学习面临的主要问题之一是如何有效地处理海量数据,而标记训练数据是十分有限且不易获得的。提出了一种新的半监督SVM算法,该算法在对SVM训练中,只要求少量的标记数据,并能利用大量的未标记数据对分类器反复的修正。在实验中发现,Tri-training的应用确实能够提高SVM算法的分类精度,并且通过增大分类器间的差异性能够获得更好的分类效果,所以Tri-training对分类器的要求十分宽松,通过SVM的不同核函数来体现分类器之间的差异性,进一步改善了协同训练的性能。理论分析与实验表明,该算法具有较好的学习效果。    

15.  基于自适应数据剪辑策略的Tri-training算法  
   邓超  郭茂祖《计算机学报》,2007年第30卷第8期
   Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用RemoveOnly剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定RemoveOnly触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性.    

16.  基于Tri-training半监督学习的中文组织机构名识别*  
   蔡月红  朱倩  程显毅a《计算机应用研究》,2010年第27卷第1期
   针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方法。该算法利用Tri-training学习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方法的分类器组合成一个分类体系,并依据最优效用选择策略进行新加入样本的选择。在大规模真实语料上与co-training方法进行了比较实验,实验结果表明,此方法能有效利用大量未标注语料提高算法的泛化能力。    

17.  基于辅助学习与富信息策略的Tri-training算法  
   崔龙杰  王红丽  崔荣一《计算机应用研究》,2014年第31卷第9期
   针对Tri-training算法利用无标记样例时会引入噪声且限制无标记样例的利用率而导致分类性能下降的缺点,提出了AR-Tri-training(Tri-training with assistant and rich strategy)算法.提出辅助学习策略,结合富信息策略设计辅助学习器,并将辅助学习器应用在Tri-training训练以及说话声识别中.实验结果表明,辅助学习器在Tri-training训练的基础上不仅降低每次迭代可能产生的误标记样例数,而且能够充分地利用无标记样例以及在验证集上的错分样例信息.从实验结果可以得出,该算法能够弥补Tri-training算法的缺点,进一步提高测试率.    

18.  基于Tri-training的主动学习算法  
   张雁  吴保国  吕丹桔  林英《计算机工程》,2014年第6期
   半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。    

19.  数据挖掘模型在入侵检测系统中的应用  
   钟家洪  赖敏《硅谷》,2012年第16期
   提出一种具有自学习功能的数据挖掘模型,可发现已知和未知的入侵和异常入侵恬动,基于数据挖掘的关联入侵规则生成算法使系统具有很强的常规入侵检测和协同入侵检测能力。    

20.  基于聚类支持向量机的入侵检测算法  被引次数:1
   雷红艳  邹汉斌  周慧灿《无线电工程》,2009年第39卷第2期
   针对支持向量机应用到入侵检测中训练时间长的特点,提出了一种基于聚类的支持向量机的入侵检测算法。该方法可以对训练数据进行剪枝,以靠近判别边界的聚类中心集合作为有效的训练样本集合对支持向量机进行训练,减少了样本的训练时间,提高了算法的效率。实验结果表明该方法对入侵检测是有效的。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号