首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
一种两阶段异常检测方法   总被引:4,自引:0,他引:4  
提出了一种新的距离和对象异常因子的定义,在此基础上提出了一种两阶段异常检测方法TOD,第一阶段利用一种新的聚类算法对数据进行聚类,第二阶段利用对象的异常因子检测异常.TOD的时间复杂度与数据集大小成线性关系,与属性个数成近似线性关系,算法具有好的扩展性,适合于大规模数据集.理论分析和实验结果表明TOD具有稳健性和实用性.  相似文献   

2.
空间离群点是指与其邻居具有明显区别的属性值的空间对象。已有的空间离散点检测算法一个主要的缺陷就是这些方法导致一些真正的离群点被忽略而把一些非离群点当成了空间离群点。提出了一种迭代算法,该算法通过多次迭代检测离群点,取得较好效果。实验表明该算法具有较好的实用性。  相似文献   

3.
基于相似孤立系数的孤立点检测算法   总被引:1,自引:0,他引:1  
基于聚类的孤立点检测算法得到的结果比较粗糙,不够准确。针对该问题,提出一种基于相似孤立系数的孤立点检测算法。定义相似距离以及相似孤立点系数,给出基于相似距离的剪枝策略,根据该策略缩小可疑孤立点候选集,并降低孤立点检测算法的计算复杂度。通过选用公共数据集Iris、Labor和Segment—test进行实验验证,结果表明,该算法在发现孤立点、缩小候选集等方面相比经典孤立点检测算法更有效。  相似文献   

4.
一种基于孤立点检测的入侵检测方法   总被引:3,自引:0,他引:3  
卢辉斌  徐刚李段 《微机发展》2005,15(6):93-94,98
孤立点检测在入侵检测中有着重要的意义,故将基于RNN的孤立点检测方法应用于网络入侵检测当中。先将数据集用于神经网络的训练,然后使用训练后的RNN对网络数据进行孤立度测量,根据度量结果判定是否为入侵行为。实验表明,该算法取得了很好的效果。  相似文献   

5.
Outlier detection is a fundamental issue in data mining, specifically in fraud detection, network intrusion detection, network monitoring, etc. SmartSifter is an outlier detection engine addressing this problem from the viewpoint of statistical learning theory. This paper provides a theoretical basis for SmartSifter and empirically demonstrates its effectiveness. SmartSifter detects outliers in an on-line process through the on-line unsupervised learning of a probabilistic model (using a finite mixture model) of the information source. Each time a datum is input SmartSifter employs an on-line discounting learning algorithm to learn the probabilistic model. A score is given to the datum based on the learned model with a high score indicating a high possibility of being a statistical outlier. The novel features of SmartSifter are: (1) it is adaptive to non-stationary sources of data; (2) a score has a clear statistical/information-theoretic meaning; (3) it is computationally inexpensive; and (4) it can handle both categorical and continuous variables. An experimental application to network intrusion detection shows that SmartSifter was able to identify data with high scores that corresponded to attacks, with low computational costs. Further experimental application has identified a number of meaningful rare cases in actual health insurance pathology data from Australia's Health Insurance Commission.  相似文献   

6.
局部离群点挖掘算法研究   总被引:14,自引:0,他引:14  
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点.  相似文献   

7.
讨论了基于无指导离群点检测的网络入侵检测技术及实现框架.技术方法首先在网络数据包上通过改进的随机森林算法建立了网络服务模型,然后通过确定网络服务模型上的离群点实现网络入侵检测.还通过在KDD'99数据集上对所提出的技术实现入侵检测的实验及结果进行了讨论并与其他无指导异常检测方法进行了比较.  相似文献   

8.
复杂领域中,异常检测的困难是异常信息和正常信息高度混杂,针对此问题,提出了基于方差的异常检测模型(variance-based outlier detection model,VODM).此模型把数据集的信息分解为正常信息和异常信息两部分,使得在正常信息损失最小的目标下,异常点集合就是前k个包含最多异常信息的样本.VODM只是一种检测异常的理论框架,为此,采用主曲线作为其实现算法.股票市场中异常收益检测的实验表明,VODM及其算法是有效的.  相似文献   

9.
异常点检测是数据挖掘的一个重要研究方向,基于Cell的异常点检测算法生成的Cell(单元)数与维数成指数增长.当生成的单元数增多及数据量增大时,基于Cell的算法不能有效工作.分析发现这些单元中存在很多无用的空单元.本文采用CD-Tree结构对非空单元进行索引,并采用聚簇技术,将每个单元中的数据点存放在同一个磁盘页链中.实验表明,采用CD-Tree以及聚簇技术设计的异常点检测磁盘算法的效率,以及所能处理的数据集维数较原基于Cell的磁盘算法都有显著的提高.  相似文献   

10.
空间离群是指非空间属性与其空间邻居显著不同的空间对象。空间数据的特殊性决定了空间离群挖掘需要充分考虑空间数据的特点,才能挖掘出有现实意义的离群。本文对现有主要的空间数据离群挖掘算法进行了研究分析,针对k-邻域法确定空间邻域的缺点,基于Delaunay三角网在表达空间邻近关系的有效性,通过构建Delaunay三角网确定空间邻域并生成空间权重矩阵,据此提出了基于Delaunay三角网的空间离群挖掘算法DT_SOF,并以实际生态地球化学数据进行实验检验。结果表明,算法具有较低的用户依赖性,能准确挖掘空间离群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号