首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Reasoning almost always occurs in the face of incomplete information. Such reasoning is nonmonotonic in the sense that conclusions drawn may later be withdrawn when additional information is obtained. There is an active literature on the problem of modeling such nonmonotonic reasoning, yet no category of method-let alone a single method-has been broadly accepted as the right approach. This paper introduces a new method, called sweeping presumptions, for modeling nonmonotonic reasoning. The main goal of the paper is to provide an example-driven, nontechnical introduction to the method of sweeping presumptions, and thereby to make it plausible that sweeping presumptions can usefully be applied to the problems of nonmonotonic reasoning. The paper discusses a representative sample of examples that have appeared in the literature on nonmonotonic reasoning, and discusses them from the point of view of sweeping presumptions.  相似文献   

2.
Heuristics can be regarded as justifying the actions and beliefs of problem-solving agents. I use an analysis of heuristics to argue that a symbiotic relationship exists between traditional epistemology and contemporary artificial intelligence. On one hand, the study of models of problem-solving agents usingquantitative heuristics, for example computer programs, can reveal insight into the understanding of human patterns of epistemic justification by evaluating these models' performance against human problem-solving. On the other hand,qualitative heuristics embody the justifying ability of defeasible rules, the understanding of which is provided by traditional epistemology.  相似文献   

3.
As an important variant of Reiter‘s default logic.Poole(1988) developed a nonmonotonic reasoning framework in the classical first-order language,Brewka and Nebel extended Poole‘s approach in order to enable a representation of priorities between defaults.In this paper a general framework for default reasoning is presented,which can be viewed as a generalization of the three approaches above.It is proved that the syntax-independent default reasoning in this framework is identical to the general belief revision operation introduced by Zhang et al.(1997).This esult provides a solution to the problem whether there is a correspondence between belief revision and default logic for the infinite case .As a by-product,an answer to the the question,raised by Mankinson and Gaerdenfors(1991),is also given about whether there is a counterpart contraciton in nonmonotonic logic.  相似文献   

4.
In this paper,the relationship between argumentation and closed world reasoning for disjunctive information is studied.In particular,the authors propose a simple and intuitive generalization of the closed world assumption(CWA) for general disjunctive deductive databases(with default negation).This semantics,called DCWA,allows a natural argumentation-based interpretation and can be used to represent reasoning for disjunctive information.We compare DCWA with GCWA and prove that DCWA extends Minker‘s GCWA to the class of disjunctive databases with defacult negation.Also we compare our semantics with some related approaches.In addition,the computational complexity of DCWA is investigated.  相似文献   

5.
Artificial argument assistants for defeasible argumentation   总被引:3,自引:0,他引:3  
Bart Verheij   《Artificial Intelligence》2003,150(1-2):291-324
The present paper discusses experimental argument assistance tools. In contrast with automated reasoning tools, the objective is not to replace reasoning, but to guide the user's production of arguments. Two systems are presented, and based on . The focus is on defeasible argumentation with an eye on the law. Argument assistants for defeasible argumentation naturally correspond to a view of the application of law as dialectical theory construction. The experiments provide insights into the design of argument assistants, and show the pros and cons of different ways of representing argumentative data. The development of the argumentation theories underlying the systems has culminated in the logical system that formalizes the interpretation of prima facie justified assumptions. introduces an innovative use of conditionals expressing support and attack. This allows the expression of warrants for support and attack, making it a transparent and flexible system of defeasible argumentation.  相似文献   

6.
In the paper we introduce a variant of autoepistemic logic that is especially suitable for expressing default reasonings. It is based on the notion of iterative expansion. We show a new way of translating default theories into the language of modal logic under which default extensions correspond exactly to iterative expansions. Iterative expansions have some attractive properties. They are more restrictive than autoepistemic expansions, and, for some classes of theories, than moderately grounded expansions. At the same time iterative expansions avoid several undesirable properties of strongly grounded expansions, for example, they are grounded in the whole set of the agent's initial assumptions and do not depend on their syntactic representation.Iterative expansions are defined syntactically. We define a semantics which leads to yet another notion of expansion — weak iterative expansion — and we show that there is an important class of theories, that we call -programs, for which iterative and weak iterative expansions coincide. Thus, for -programs, iterative expansions can be equivalently defined by semantic means.This work was partially supported by Army Research Office under grant DAAL03-89-K-0124, and by National Science Foundation and the Commonwealth of Kentucky EPSCoR program under grant RII 8610671.  相似文献   

7.
8.
A generalisation of the maximum entropy (ME) approach to default reasoning [7,8] to cater for variable strength defaults is presented. The assumptions on which the original work was based are reviewed and revised. A new algorithm is presented that is shown to compute the ME-ranking under these more general conditions. The limitations of the revised approach are discussed and a test for the uniqueness of the ME-solution is given. The ME-solutions to several illustrative examples of default reasoning are given, and the approach is shown to handle them appropriately. The conclusion is that the ME-approach can be regarded as providing a benchmark theory of default reasoning against which default intuitions and other default systems may be assessed.  相似文献   

9.
The general conditions of epistemic defeat are naturally represented through the interplay of two distinct kinds of entailment, deductive and defeasible. Many of the current approaches to modeling defeasible reasoning seek to define defeasible entailment via model-theoretic notions like truth and satisfiability, which, I argue, fails to capture this fundamental distinction between truthpreserving and justification-preserving entailments. I present an alternative account of defeasible entailment and show how logic programming offers a paradigm in which the distinction can be captured, allowing for the modeling of a larger range of types of defeat. This is possible through a natural extension of the declarative and procedural semantics of Horn clauses.  相似文献   

10.
The Gelfond-Lifschitz operator associated with a logic program (and likewise the operator associated with default theories by Reiter) exhibits oscillating behavior. In the case of logic programs, there is always at least one finite, nonempty collection of Herbrand interpretations around which the Gelfond-Lifschitz operator bounces around. The same phenomenon occurs with default logic when Reiter's operator is considered. Based on this, a stable class semantics and extension class semantics has been proposed. The main advantage of this semantics was that it was defined for all logic programs (and default theories), and that this definition was modelled using the standard operators existing in the literature such as Reiter's operator. In this paper our primary aim is to prove that there is a very interestingduality between stable class theory and the well-founded semantics for logic programming. In the stable class semantics, classes that were minimal with respect to Smyth's power-domain ordering were selected. We show that the well-founded semantics precisely corresponds to a class that is minimal w.r.t. Hoare's power domain ordering: the well-known dual of Smyth's ordering. Besides this elegant duality, this immediately suggests how to define a well-founded semantics for default logic in such a way that the dualities that hold for logic programming continue to hold for default theories. We show how the same technique may be applied to strong autoepistemic logic: the logic of strong expansions proposed by Marek and Truszczynski.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号