首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Satellite images provide important data sources for monitoring flood disasters. However, the trade-off between spatial and temporal resolutions of current satellite sensors limits their uses in urban flooding studies. This study applied and compared two data fusion models, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), in generating synthetic flooding images with improved temporal and spatial resolution for flood mapping. The synthetic images are produced in two scenarios: (1) for real-time prediction based on Landsat and MODIS images acquired before the investigated flooding; and (2) for post-disaster prediction based on images acquired after the flooding. The 2005 Hurricane Katrina in New Orleans was selected as a case study. The result shows that the Landsat-like images generated can be successfully applied in flood mapping. Particularly, ESTARFM surpasses STARFM in predicting surface reflectance in both real-time and post-flooding predictions. However, the flood mapping results from the Landsat-like images produced by both STARFM and ESTARFM are similar with overall accuracy around 0.9. Only for the flooding maps of real-time predictions does ESTARFM get a slightly higher overall accuracy than STARFM, indicating that the lower quality of the Landsat-like image generated by STARFM may not affect flood mapping accuracy, due to the marked contrast between land and water. This study suggests great potential of both STARFM and ESTARFM in urban flooding research. Blending multi-sources images could also support other disaster studies that require remotely sensed data with both high spatial and temporal resolution.  相似文献   

2.
Owing to technical limitations the acquisition of fine spatial resolution images (e.g. Landsat data) with frequent (e.g. daily) coverage remains a challenge. One approach is to generate frequent Landsat surface reflectances through blending with coarse spatial resolution images (e.g. Moderate Resolution Imaging Spectroradiometer, MODIS). Existing implementations for data blending, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced STARFM (ESTARFM), have their shortcomings, particularly in predicting the surface reflectance characterized by land-cover-type changes. This article proposes a novel blending model, namely the Unmixing-based Spatio-Temporal Reflectance Fusion Model (U-STFM), to estimate the reflectance change trend without reference to the change type, i.e. phenological change (e.g. seasonal change in vegetation) or land-cover change (e.g. conversion of a vegetated area to a built-up area). It is based on homogeneous change regions (HCRs) that are delineated by segmenting the Landsat reflectance difference images. The proposed model was tested on both simulated and actual data sets featuring phenological and land-cover changes. It proved more capable of capturing both types of change compared to STARFM and ESTARFM. The improvement was particularly observed on those areas characterized by land-cover-type changes. This improved fusion algorithm will thereby open new avenues for the application of spatio-temporal reflectance fusion.  相似文献   

3.
Remotely sensed surface parameters, such as vegetation index, leaf area index, surface temperature, and evapotranspiration, show diverse spatial scales and temporal dynamics. Generally the spatial and temporal resolutions of remote-sensing data should match the characteristics of surface parameters under observation. These requirements sometimes cannot be provided by a single sensor due to the trade-off between spatial and temporal resolutions. Many spatial and temporal fusion (STF) methods have been proposed to derive the required data. However, the methodology suffers from disorderly development. To better inform future research, this study generalizes the existing methods from around 100 studies as spatial or temporal categories based on their physical assumptions related to spatial scales and temporal dynamics. To be specific, the assumptions are related to the scale invariance of the temporal information and temporal constancy of the spatial information. The spatial information can be contexture or spatial details. Experiments are conducted using Landsat data acquired on 13 dates in two study areas and simulated Moderate Resolution Imaging Spectroradiometer (MODIS) data. The results are presented to demonstrate the typical methods from each category. This study concludes the following. (1) Contexture methods depend heavily on how components maps (contexture) are defined. They are not recommended except when components maps can be estimated properly from observed images. (2) The spatial and temporal adaptive reflectance fusion model (STARFM) and enhanced STARFM (ESTARFM) methods belong to the temporal and spatial categories, respectively. Thus, STARFM and ESTARFM should be better applied to temporal variance – dominated and spatial variance – -dominated areas, respectively. (3) Non-linear methods, such as the sparse representation-based spatio-temporal reflectance fusion model, can successfully address land-cover changes in addition to phonological changes, thereby providing a promising option for STF problems in the future.  相似文献   

4.
目的 时空融合是解决当前传感器无法兼顾遥感图像的空间分辨率和时间分辨率的有效方法。在只有一对精细-粗略图像作为先验的条件下,当前的时空融合算法在预测地物变化时并不能取得令人满意的结果。针对这个问题,本文提出一种基于线性模型的遥感图像时空融合算法。方法 使用线性关系表示图像间的时间模型,并假设时间模型与传感器无关。通过分析图像时间变化的客观规律,对模型进行全局和局部约束。此外引入一种多时相的相似像素搜寻策略,更灵活地选取相似像素,消除了传统算法存在的模块效应。结果 在两个数据集上与STARFM(spatial and temporal adaptive reflectance fusion model)算法和FSDAF(flexible spatiotemporal data fusion)算法进行比较,实验结果表明,在主要发生物候变化的第1个数据集,本文方法的相关系数CC(correlation coefficient)分别提升了0.25%和0.28%,峰值信噪比PSNR(peak signal-to-noise ratio)分别提升了0.153 1 dB和1.379 dB,均方根误差RMSE(root mean squared error)分别降低了0.05%和0.69%,结构相似性SSIM(structural similarity)分别提升了0.79%和2.3%。在发生剧烈地物变化的第2个数据集,本文方法的相关系数分别提升了6.64%和3.26%,峰值信噪比分别提升了2.086 0 dB和2.510 7 dB,均方根误差分别降低了1.45%和2.08%,结构相似性分别提升了11.76%和11.2%。结论 本文方法根据时间变化的特点,对时间模型进行优化,同时采用更加灵活的相似像素搜寻策略,收到了很好的效果,提升了融合结果的准确性。  相似文献   

5.
Because of low temporal resolution and cloud influence, many remote-sensing applications lack high spatial resolution remote-sensing data. To address this problem, this study introduced an improved spatial and temporal data fusion approach (ISTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the weaknesses of the spatial and temporal data fusion approach (STDFA) method, including the sensor difference and spatial variability. A weighted linear mixed model was used to adjust the spatial variability of surface reflectance. A linear-regression method was used to remove the influence of differences in sensor systems. This method was tested and validated in three study areas located in Xinjiang and Anhui province, China. The other two methods, the STDFA and the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), were also applied and compared in those three study areas. The results showed that the ISTDFA algorithm can generate daily synthetic Landsat imagery accurately, with correlation coefficient r equal to 0.9857 and root mean square error (RMSE) equal to 0.0195, which is superior to the STDFA method. The ISTDFA method had higher accuracy than ESTARFM in areas greater than 200 × 200 MODIS pixels while the ESTARFM method had higher accuracy than the ISTDFA method in small areas. The correlation coefficient r had a negative power relation with ratio of land-cover change pixels. A land-cover change of 20.25% pixels can lead to a reduced correlation coefficient r of 0.295 in the blue band. The accuracy of the ISTDFA method indicated a logarithmic relationship with the size of the applied area, so it is recommended for use in large-scale areas.  相似文献   

6.
由于技术条件的限制,一个传感器很难同时具有高空间分辨率和高时间分辨率。然而,在高分辨率尺度上监测地表景观季节性变化的能力是全球的迫切需要,融合周期短、覆盖范围广与分辨率高、周期长的遥感数据是一种较好的方法。基于AVHRR时间分辨率高和TM空间分辨率高及其数据积累时间长的特点,选择若尔盖高原为研究区域,在改进ESTARFM方法的基础上,对TM NDVI和AVHRR NDVI进行融合,构建高时空分辨率的NDVI数据集。研究结果表明:该方法能有机结合AVHRR NDVI的时间变化信息与TM NDVI的空间差异信息,有效实现高时空分辨率NDVI数据集的重构,3景预测高分辨率NDVI与MODIS NDVI产品相关系数分别达到了0.89、0.91和0.85。该方法能够在时间上保留高时间分辨率数据的时间变化信息,同时在空间上反映高空间分辨率数据的空间差异信息,从而为有效构建相对高分辨率时间序列NDVI数据集提供了可能的方法。  相似文献   

7.
This paper presents a spatio-temporal fusion method for remote sensing images by using a linear injection model and local neighbourhood information. In this method, the linear injection model is first introduced to generate an initial fused image, the spatial details are extracted from the fine-resolution image at the base date, and are weighted by a proper injection gains. Then, the spatial details and the relative spectral information from the coarse-resolution images are blended to generate the fusion result. To further enhance its robustness to the noise, the local neighbourhood information, derived from the fine-resolution image and the fused result simultaneously, is introduced to refine the initial fused image to obtain a more accurate prediction result. The algorithm can effectively capture phenology change or land-cover-type change with minimum input data. Simulated data and two types of real satellite images with seasonal changes and land-cover-type changes are employed to test the performance of the proposed method. Compared with a spatial and temporal adaptive reflectance fusion model (STARFM) and a flexible spatio-temporal fusion algorithm (FSDAF), results show that the proposed approach improves the accuracy of fused images in phenology change area and effectively captures land-cover-type reflectance changes.  相似文献   

8.
Investigating the temporal and spatial pattern of landscape disturbances is an important requirement for modeling ecosystem characteristics, including understanding changes in the terrestrial carbon cycle or mapping the quality and abundance of wildlife habitats. Data from the Landsat series of satellites have been successfully applied to map a range of biophysical vegetation parameters at a 30 m spatial resolution; the Landsat 16 day revisit cycle, however, which is often extended due to cloud cover, can be a major obstacle for monitoring short term disturbances and changes in vegetation characteristics through time.The development of data fusion techniques has helped to improve the temporal resolution of fine spatial resolution data by blending observations from sensors with differing spatial and temporal characteristics. This study introduces a new data fusion model for producing synthetic imagery and the detection of changes termed Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH). The algorithm is designed to detect changes in reflectance, denoting disturbance, using Tasseled Cap transformations of both Landsat TM/ETM and MODIS reflectance data. The algorithm has been tested over a 185 × 185 km study area in west-central Alberta, Canada. Results show that STAARCH was able to identify spatial and temporal changes in the landscape with a high level of detail. The spatial accuracy of the disturbed area was 93% when compared to the validation data set, while temporal changes in the landscape were correctly estimated for 87% to 89% of instances for the total disturbed area. The change sequence derived from STAARCH was also used to produce synthetic Landsat images for the study period for each available date of MODIS imagery. Comparison to existing Landsat observations showed that the change sequence derived from STAARCH helped to improve the prediction results when compared to previously published data fusion techniques.  相似文献   

9.
A novel spatiotemporal reflectance fusion method integrating image inpainting and steering kernel regression fusion model (ISKRFM) is proposed to improve the fusion accuracy for remote-sensing images with different temporal and spatial characteristics in this article. This method first detects the land-cover changed regions and then fills them with unchanged similar pixels by an exemplar-based inpainting technique. Furthermore, a steering kernel regression (SKR) is used to adaptively determine the weightings of local neighbouring pixels to predict high spatial resolution image. Accordingly, the main contributions of this method are twofold. One is to address the land-cover change issues in the spatiotemporal fusion, and the other is to establish an adaptive weighting assignment according to the pixel locations and the radiometric properties of the local neighbours to account for the effect of neighbouring pixels. To validate the proposed method, two actual Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) acquisitions at southeast China were implemented and compared with the baseline spatial and temporal adaptive reflectance fusion model (STARFM). The experimental results demonstrate that addressing the land-cover changes in spatiotemporal fusion has positive effects on the fused image, and the proposed ISKRFM method significantly outperforms STARFM in terms of both visual and quantitative measurements.  相似文献   

10.
Spatiotemporal fusion (STF) technologies are commonly used to acquire high spatiotemporal resolution remote sensing observations. However, most STF technologies fail to consider the nonlinear variation in vegetation in the time domain. Based on the Best Linear Unbiased Estimator (BLUE), this paper proposed a novel STF algorithm (referred to BLUE) which accounts for the phenological characteristics of vegetation. First, annual time series of normalized difference vegetation index (NDVI) data with high spatial resolution but low temporal resolution is fitted using a double logistic function and used as the background field. Then, NDVI data with low spatial resolution but high temporal resolution is used as the observation field. The information in the background and observation fields is fused using the BLUE to obtain high spatiotemporal resolution NDVI data. The proposed algorithm was used to produce dense time series of 30 m resolution NDVI data for a 10 km × 10 km experimental area in 2014. The experimental results demonstrate that the accuracy of fusion results from the proposed BLUE method are higher than those from the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and Linear Mixing Growth Model (LMGM), especially when the temporal component of surface heterogeneity is dominant. The proposed algorithm has broad prospects in vegetation monitoring at high spatiotemporal resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号