首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 468 毫秒

1.  基于随机特征字典的纹理分类方法  
   沈仁明  徐小红  王教余  廖重阳《计算机应用研究》,2015年第32卷第1期
   为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。    

2.  基于分布结构约束稀疏表示的图像分类方法  
   范引娣《计算机与现代化》,2015年第7期
   为了解决稀疏表示结构信息缺失的问题,从而更加准确地进行图像分类,本文提出一种新的基于结构约束的稀疏表示的图像分类方法。在对图像进行降采样的前提下,提取方向梯度直方图特征后的训练样本上构建稀疏线性编码模型,通过样本间的分布结构信息约束和?1范数最优化求解测试样本的稀疏系数x,利用稀疏系数均值法进行目标的分类识别。基于COREL图像库进行仿真验证,实验证明,基于结构约束稀疏表示的图像分类方法能够获得很好的识别性能,与非结构约束稀疏表示相比本文方法显著提高了图像分类的准确率。    

3.  基于压缩感知的SAR图像目标识别  
   方庆  张顺生  段昶《火控雷达技术》,2012年第4期
   提出一种基于压缩感知的合成孔径雷达图像目标识别方法,将目标识别问题转化为稀疏表示的近似求解问题。该方法利用测试样本在全体训练样本基下的稀疏性,实现样本间的近似稀疏表示。通过考察稀疏系数主要集中于样本真实类别之上的分布特性,研究了稀疏系数本身对目标类别具有的可区分能力,最后基于稀疏系数的分布特性设计分类算法完成目标识别。基于MSTAR数据中三类目标的实验证明,与目前已有的几种典型方法相比,该方法可以取得更高的识别率,是一种有效的合成孔径雷达图像目标识别方法。    

4.  基于手背静脉图像多特征稀疏表示的身份识别  被引次数:1
   贾旭  崔建江  薛定宇  刘晶《仪器仪表学报》,2011年第32卷第10期
   为了准确地对人的身份进行识别,提出了一种对采集静脉图像的全局特征和局部特征进行稀疏表示的识别算法.该算法首先应确定静脉样本库中所有的静脉对象,并在不同光强下对每一手背静脉进行采集,此外将采集图像进行适当压缩与旋转,并将变换后的所有图像作为库中描述该静脉对象的样本;其次,分别提取该静脉对象所有样本的全局特征与局部特征,并通过求解每一特征系数向量的最小1范数,对未知静脉图像的全局与局部特征进行稀疏表示;最后,融合稀疏表示结果,完成静脉识别的过程.通过在3种光强下对200个人的手背静脉进行采集,并经过图像压缩与旋转调整后建立实验所需的静脉样本数据库,识别实验表明该识别方法正确识别率达到98%以上,并且对于采集时出现多种不合作因素具有较好的鲁棒性,同时具有较好的实用价值.    

5.  Shearlet变换和稀疏表示相结合的甲状腺图像融合  
   郑伟  孙雪青  郝冬梅  吴颂红《光电工程》,2015年第42卷第1期
   针对甲状腺肿瘤超声图像对比度低和SPECT图像边界模糊的特点,结合多尺度几何分析和单尺度稀疏表示的思想,提出了一种 Shearlet 变换与稀疏表示相结合的图像融合算法。首先,用该变换对已经精确配准的源图像进行分解,得到图像的高低频子带系数。对稀疏性较差的低频子带系数进行字典训练并求解其稀疏表示系数,并采用能量值取大的规则进行融合。高频子带系数采用区域拉普拉斯能量和的规则。最后,用 Shearlet 逆变换得到融合图像。实验结果表明,此算法在主观视觉效果和客观评价指标上优于多尺度融合方法和单尺度下基于稀疏表示的图像融合方法。    

6.  采用均匀局部二元模式及稀疏表示的掌纹识别  
   王文龙  金炜  谢芸  倪旭艳《光电工程》,2014年第12期
   针对传统掌纹识别方法易受噪声干扰,且旋转鲁棒性差的问题,提出一种采用均匀局部二元模式(Uniform Local Binary Patterns,ULBP)及稀疏表示的掌纹识别方法。该方法利用善于表达图像纹理特征,且具有良好旋转不变性和抗干扰性的ULBP提取掌纹图像特征;同时考虑到直接对整幅图像进行ULBP处理会丢失局部纹理,采用先对各图像进行分块,再对各块分别进行ULBP处理的特征提取方案。在分类算法的设计上,本文利用掌纹图像库中训练样本的ULBP特征构造过完备字典,通过求解l1范数意义下的最优化问题实现测试样本的稀疏分解,并提出一种基于统计残差平均的稀疏表示分类方法,实现了测试掌纹图像的分类识别。实验结果表明,本文方法不仅具有良好的旋转及噪声鲁棒性,而且总体识别率明显优于基于PCA及2DPCA的传统稀疏表示分类方法,对于包含5 000031 0人的掌纹数据库,识别率分别提高了8.8%和6.8%。    

7.  基于Gabor小波和稀疏表示的人脸表情识别  
   张娟  詹永照  毛启容  邹翔《计算机工程》,2012年第38卷第6期
   通过分析Gabor小波和稀疏表示的生物学背景和数学特性,提出一种基于Gabor小波和稀疏表示的人脸表情识别方法。采用Gabor小波变换对表情图像进行特征提取,建立训练样本Gabor特征的超完备字典,通过稀疏表示模型优化人脸表情图像的特征向量,利用融合识别方法进行多分类器融合识别分类。实验结果表明,该方法能够有效提取表情图像的特征信息,提高表情识别率。    

8.  整合原始人脸图像和其虚拟样本的人脸分类算法  
   刘 梓  宋晓宁  唐振民《计算机科学》,2015年第42卷第5期
   人脸识别作为最具吸引力的生物识别技术之一,由于会受到不同的照明条件、面部表情、姿态和环境的影响,仍然是一个具有挑战性的任务.众所周知,一幅人脸图像是对人脸的一次采样,它不应该被看作是脸部的绝对精确表示.然而在实际应用中很难获得足够多的人脸样本.随着稀疏表示方法在图像重建问题中的成功应用,研究人员提出了一种特殊的分类方法,即基于稀疏表示的分类方法.受此启发,提出了在稀疏表示框架下的整合原始人脸图像和虚拟样本的人脸分类算法.首先,通过合成虚拟训练样本来减少面部表示的不确定性.然后,在原始训练样本和虚拟样本组成的混合样本中通过计算来消除对分类影响较小的类别和单个样本,在系数分解的过程中采用最小误差正交匹配追踪(Error-Constrained Orthogonal Matching Pursuit,OMP)方法,进而选出贡献程度大的类别样本并进行分类.实验结果表明,提出的方法不仅能获得较高的人脸识别的精度,而且还具有更低的计算复杂性.    

9.  特征分类学习的结构稀疏传播图像修复方法  
   康佳伦  唐向宏  张东  屠雅丽《计算机辅助设计与图形学学报》,2015年第5期
   针对样本图像字典自适应性差、有效信息单一、造成图像稀疏表示模糊的不足的问题,提出一种基于特征分类学习字典的结构稀疏传播图像修复方法。首先将图像块按特征分类,根据不同特征的图像样本进行样本训练得到相对应的过完备字典;然后对不同特征的待修复图像块提取不同的有效信息进行稀疏编码,使得稀疏表示具有较强的自适应能力;最后针对结构稀疏传播模型带来的偏差进行修改,完善结构稀疏的传播机制。仿真实验结果表明,该方法可以有效地修复图像结构边缘、不规则纹理和平滑部分的图像信息,修复后的图像质量有较大的提升。    

10.  基于稀疏表示的SAR图像目标识别方法  
   刘 振  姜 晖  王粒宾《计算机工程与应用》,2014年第10期
   为了准确地进行SAR图像目标识别,提出一种基于稀疏表示的SAR目标识别方法,在用主成分分析(PCA)进行降维的前提下,利用降维后的训练样本构建稀疏线性模型,通过 ξ1范数最优化求解测试样本的稀疏系数解x,利用系数的稀疏性分布进行目标的分类识别。基于MSTAR数据进行了仿真验证,实验证明,基于稀疏表示的SAR目标识别方法在一定的特征维数下能够获得很好的识别性能,在目标方位角未知的情况下识别率仍可达到98%以上。    

11.  基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法  
   杜海顺  张旭东  金勇  侯彦东《电子学报》,2014年第12期
   针对含光照、表情、姿态、遮挡等误差或被噪声污染的人脸图像的识别问题,本文提出一种基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法。该方法首先用低秩矩阵恢复算法求得训练样本图像对应的误差图像;然后,对每一个训练样本图像及其对应的误差图像进行Gabor变换,得到相应的Gabor特征向量,并将这些Gabor特征向量组成一个Gabor特征字典;进而,计算测试样本图像Gabor特征向量在该Gabor特征字典下的稀疏表示系数,并用该稀疏表示系数和Gabor特征字典,对测试样本图像的Gabor特征向量进行类关联重构,同时计算相应的类关联重构误差。最后,根据测试样本图像Gabor特征向量的类关联重构误差,实现对测试样本图像的分类识别。在CMU PIE、Extend-ed Yale B和AR数据库上的实验结果表明,本文提出的人脸图像识别方法具有较高的识别率和较强的抗干扰能力。    

12.  基于协作表示残差融合的3维人脸识别  
   詹曙  臧怀娟  相桂芳《中国图象图形学报》,2015年第20卷第5期
   目的 针对2维人脸难以克服光照、表情、姿态等复杂问题,提出了一种基于协作表示残差融合的新算法.方法 协作表示分类算法是将所有类的训练图像一起协作构成字典,通过正则化最小二乘法代替1范数求解稀疏系数,减小了计算的复杂度,由此系数重构测试人脸,根据重构误差最小原则,对测试人脸正确分类.该方法首先在3维人脸深度图上提取Gabor特征和Geodesic特征,然后在协作表示算法的基础上融合两者的残差信息,作为最终差异性度量,最后根据融合残差最小原则,进行人脸识别.结果 在不同的训练样本、特征维数条件下,在CIS和Texas 2 个人脸数据库上,本文算法的识别率可分别达到94.545%和99.286%.与Gabor-CRC算法相比,本文算法的识别率平均高出了10%左右.结论 在实时成像系统采集的人脸库和Texas 3维人脸库上的实验结果表明,该方法对有无姿态、表情、遮挡等变化问题具有较好的鲁棒性和有效性.    

13.  基于多特征融合的道路交通标志检测  
   朱国康  王运锋《信号处理》,2011年第27卷第10期
   在道路交通标志的检测中,针对自然实景情况中拍摄到的图像存在的交通标志大小和位置不确定等困难问题,本文提出一种基于实景图像的多特征融合的道路交通标志检测方法.论文把样本分为了训练和测试样本,首先对训练样本图像进行盲复原处理;其次对复原处理后的图像进行自适应性的形状区域裁剪,提取裁剪区域图像的颜色、纹理和形状特征;再次分别对颜色、纹理和形状特征进行SVM分类检测,从而获得颜色、纹理和形状三个分类模型;最后对模型的权值进行自适应性计算,得到加权的特征融合模型.通过测试样本对模型的检测,结果表明特征融合识别方法有很高的准确度,另外对比实验得到的数据显示融合模型提高了道路交通检测的准确度和鲁棒性.    

14.  基于SVM的室外场景图像的景物识别  
   郑梦兴  薛静  张通《计算机仿真》,2011年第28卷第4期
   关于图像识别优化问题,针对在图像的处理中颜色、纹理等单一特征不能全面描述图像的问题,为了精确识别目标图像,提出一种颜色特征和纹理特征相结合的方法.采用基于RGB空间的颜色直方图和基于多通道Gabor滤波器分别对颜色特征和纹理特征进行提取,并对颜色与纹理特征进行外部归一化得到组合特征,并应用支持向量机法(SVM)对组合特征样本训练分类.实验结果表明,改进方法可以克服用单一特征分析图像的片面性,同时提取了理想的图像结构和光谱特性,可以在图像目标的识别和分类中取得较好的效果.    

15.  一种基于多特征融合的相似图像检索方法  
   王路  朱明  刘夏荷《电子技术》,2013年第8期
   提出一种基于多特征融合的图像检索方法。首先基于采用HSV颜色空间统计向量、Canny算法和Gabor滤波的方法,分别提取图像的颜色、形状和纹理特征,并提出用图像感兴趣区域的长宽比值R作为尺寸特征。然后通过计算图像颜色和纹理的欧氏距离,同时结合形状匹配程度来判断图像的相似性,并且利用R值确定图像的尺寸相似性约束区间。实验结果表明,相较于采用单一颜色或纹理特征的检索方法,采用本方法的检索提高了查准率和查全率。    

16.  采用稀疏表示的红外图像自适应杂波抑制  被引次数:3
   穆治亚  魏仲慧  何昕  梁国龙《光学精密工程》,2013年第21卷第7期
   针对红外图像中弱小目标的检测问题,提出了一种基于图像稀疏表示的自适应杂波抑制方法.首先,采集500帧红外图像样本,通过训练学习构造包含图像各个层次结构特征的多成分超完备字典;然后,通过红外图像的协方差自适应地选择与图像子块对应的超完备字典对图像进行稀疏表示,利用匹配追踪算法得到子图像在超完备目标字典下的最佳表示系数;最后,根据表示系数以及对应的原子向量对图像子块进行重构,从而得到突出红外小目标的高信噪比重构图像,实现杂波抑制.不同环境下的多项实验表明,该算法可在复杂背景下自适应地抑制杂波,提高图像的信噪比;通过简单的阈值分割可以分开目标和背景,为之后的目标检测处理奠定基础.得到的性能评价指标显示:本算法计算量较小,实时性较强,鲁棒性较强,易于硬件实现.    

17.  局部稀疏编码的自然灰度图像着色方法  
   郝凯  宋明黎  卜佳俊  陈纯《计算机辅助设计与图形学学报》,2011年第23卷第8期
   基于自然图像中灰度纹理与颜色信息的正相关性,提出一种基于局部稀疏编码的自然灰度图像着色方法.首先依据参考彩色图像训练得到“亮度-纹理-颜色”联合字典;然后利用纹理特征子空间和相邻像素的双重局部性求解目标灰度图像块的颜色系数,对图像块进行着色;最后通过金字塔方法逐层优化避免颜色突变.实验结果表明,文中方法可以获得颜色真实度高且整体过渡平滑的目标彩色图像,着色过程也更加自动化.    

18.  结合组稀疏效应和多核学习的图像标注  
   袁莹  邵健  吴飞  庄越挺《软件学报》,2012年第23卷第9期
   图像中存在的纹理、颜色和形状等异构视觉特征,在表示特定高层语义时所起作用的重要程度不同,为了在图像标注过程中更加有效地利用这些异构特征,提出了一种基于组稀疏(group sparsity)的多核学习方法(multiple kernel learning with group sparsity,简称MKLGS),为不同图像语义选择不同的组群特征.MKLGS先将包含多种异构特征的非线性图像数据映射到一个希尔伯特空间,然后利用希尔伯特空间中的核函数以及组LASSO(groupLASSO)对每个图像类别选择最具区别性特征的集合,最终训练得到分类模型对图像进行标注.通过与目前其他图像标注算法进行对比,实验结果表明,基于组稀疏的多核学习方法在图像标注中能取得很好的效果.    

19.  稀疏表示人脸识别的关键问题分析  
   单建华  张晓飞《安徽工业大学学报》,2014年第2期
   稀疏表示是一种高效的图像表示方法,且稀疏系数具有很好的稀疏性和可扩展性。基于稀疏表示的人脸识别能够提高识别率,增强鲁棒性。针对人脸识别在实际应用中遇到的问题,对稀疏表示人脸识别的方法、识别中遇到的关键问题及其解决办法进行综述。结果表明:稀疏表示人脸识别中,光照变化,可以通过增加不同光照的人脸图像训练样本解决;遮挡腐蚀,可以通过用加入误差字典来扩展过完备字典解决;姿势变化或未对准,可以通过对输入图像进行线性结构迭代变换解决;利用稀疏集中指数可以实现图像是否有效的判断。指出采用稀疏表示同时处理对准和连续遮挡的人脸图像识别,及识别准确性与实时性的提高是需进一步研究的方向。    

20.  基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别  
   殷飞  焦李成《模式识别与人工智能》,2012年第25卷第1期
   针对含有残缺图像的遥感图像目标识别问题,提出一种基于旋转扩展和稀疏表示的目标识别方法.首先对训练集进行旋转扩展,使得测试图像能近似用训练集稀疏表示,然后通过求解一个l1范数最小化问题得到测试图像相对于训练集的一个稀疏表示,进而根据不同类对应的稀疏表示对测试图像的近似程度进行识别.与代表性的方法进行比较,实验结果与分析表明,该方法识别率优于已有方法,对残缺图像的识别有较好的鲁棒性,且在小样本、低采样率情况下也能保持较好的识别性能.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号