首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
提出了一种基于MEMS技术,由MEMS微波功分器和在线式MEMS微波功率传感器组成的在线自检测MEMS微波功分器,实现了MEMS微波功分器在Ka波段的实时在线功率自检测。MEMS微波功分器为T型功率等分功分器,由共面波导、圆形的不对称共面带线和空气桥构成,三个端口处分别放置三个相同的在线式MEMS微波功率传感器用于端口处信号功率的实时监测。该结构基于GaAs MMIC工艺,它可以与GaAs微波电路实现单片集成,通过ADS和HFSS软件的协同仿真,在中心频率34GHz处,回波损耗S11小于-30dB?插入损耗S21(S31)约为-4.7dB。在26GHz ~40GHz的频率范围内,S11约小于-15dB,隔离度S23小于-15dB。  相似文献   

2.
设计了一种在35 GHz毫米波段的一分八路Wilkinson功分器.使用HFSS软件对功分器进行仿真,通过对传统的Wilkinson功率分配器的改进,详细介绍了二功分器以及八功分器.设计的毫米波功分器具有体积小,频带宽的特点;具有较好的性能指标:在32~36 GHz范围内,参数S21~S91在-9~-9.5 dB之间,S11小于-15 dB.  相似文献   

3.
为了使衰减器更好的适应相控阵系统对高集成度波束赋形电路的应用需求。基于55nm CMOS工艺,设计了一款具有低插入损耗、低附加相移特性的六位数控衰减器,该数控衰减器采用桥T和π型衰减结构级联而成,在10-26 GHz频率范围内实现步进为0.5dB、动态范围为0-31.5 dB的信号幅度衰减。为减小插入损耗,NMOS开关采用悬浮栅和悬浮衬底连接方式,同时采用了电容补偿网络和电感补偿以有效降低附加相移。仿真结果表明,在10-26GHz的频带范围内,该数控衰减器的插入损耗小于-7dB,输入/输出回波小于-10dB,附加相移小于±3°,所有衰减态的衰减误差均方根小于0.8dB,芯片的核心电路面积为0.36 mm×0.16 mm。  相似文献   

4.
为满足3.5 GHz单载波超宽带无线接收机的射频需求,设计了一种工作在3~4 GHz的超宽带低噪声放大器。电路采用差分输入的CMOS共栅级结构,利用MOS管跨导实现宽带输入匹配,利用电容交叉耦合结构和噪声消除技术降低噪声系数,同时提高电压增益。分析了该电路的设计原理和噪声系数,并在基于SMIC 0.18μm CMOS射频工艺进行了设计仿真。仿真结果表明:在3~4GHz频段内,S11和S22均小于-10 dB,S21大于14dB,带内起伏小于0.5dB,噪声系数小于3dB;1.8V电源电压下,静态功耗7.8mW。满足超宽带无线接收机技术指标。  相似文献   

5.
一种0.8GHz~6GHz CMOS超宽带低噪声放大器设计   总被引:1,自引:0,他引:1  
给出了一个针对0.8GHz~6GHz 的超宽带低噪声放大器 UWB LNA(ultra-wideband low noiseamplifier)设计。设计采用0.18μm RF CMOS 工艺完成。在0.8GHz~6GHz 的频段内,放大器增益 S21达到了17.6dB~13.6dB。输入、输出均实现良好的阻抗匹配,S11、S22均低于-10dB。噪声系数(NF)为2.7dB~4.6dB。在1.8V 工作电压下放大器的直流功耗约为12mW。  相似文献   

6.
分析了进行功耗限制条件下怎样得到低噪声放大器的最优噪声,并就阻抗匹配及小信号电压增益进行了详细讨论。介绍了采用0.25μmCMOS工艺设计的工作在2.4GHz频率下的全集成低噪声放大器。模拟结果表明,在2.4GHz工作频率下,低噪声放大器的功耗为16mW,正向增益S21可达15dB,反射参数S11、S22分别小于-23dB和-20dB,噪声系数NF为2.7dB,三阶互调点ⅡP3为-0.5dB。  相似文献   

7.
设计了一种基于多层硅转接板堆叠的垂直互联结构,对DC-60 GHz频段内不考虑和考虑硅表面SiO2层的两种层间结构的垂直互联仿真结果进行对比,证明了硅表面SiO2层存在会对谐振频率及阻抗等射频性能产生影响;对后者垂直互联结构进行参数优化,射频传输性能较好,频率40 GHz以下时回波损耗S11小于-30 dB,60 GHz以下整体S11小于-15 dB,插入损耗S12在50 GHz以下大于-0.32 dB;研究了硅表面SiO2绝缘层厚度变化对射频信号传输性能的影响,结果表明适当增加其厚度有助于垂直互联结构性能优化.  相似文献   

8.
采用周期性慢波结构加载的开路传输线代替传统的四分之一波长阻抗变换器,设计一种小型化且适用于高频的Wilkinson功分器,有效改善了传统Wilkinson功分器尺寸大且高频时容易出现色散的问题。最后基于FR4基板,设计应用于900 MHz的Wilkinson功分器,测量结果显示,三个端口匹配良好,S11约为-20.58 dB,S22约为-23.62 dB,S21约为-3.28 dB,输出端口的隔离度约为-33.3 dB,仿真结果和测量结果趋势吻合,验证了该方法的可行性。  相似文献   

9.
为了准确分析反射型声表面波器件参数对其性能的影响,基于耦合模理论和P矩阵方法建立了器件的耦合模模型,分析得到器件的电反射特性即反射系数S11曲线,并在128°Y-X LiNbO3压电基片试制了频率为90 MHz的多种参数的器件,分析与测试结果表明:单个叉指换能器器件的S11中心频率为91.26 MHz,幅值为-20.58 dB,与理论分析结果91.44 MHz和-19.21 dB相近;带有反射栅的器件比单个叉指换能器件在中心频率处S11幅值增大约8.5 dB,谐振峰增多,时域曲线有明显的反射峰信号,验证了反射栅的反射特性;叉指换能器叉指对数减小使器件中心频率处的S11幅值减小,时域中的回波信号更尖锐,信噪比明显增大,表明对数较多的IDT具有较强的反射特性,对回波信号干扰较大,过小的叉指对数对器件声电转换效率影响很大,会使器件性能下降;较大的反射栅指条数对回波信号影响不大,但过小的指条数会降低反射栅反射系数,使得回波信号信噪比减小,纹波增多.  相似文献   

10.
本文设计实现了一个2~5GHz的两级CMOS低噪声放大器(LNA),可应用在超宽带的下半频段(3.1~5GHz)。LNA由两级组成,第一级是一个共栅级,保持良好的线性度并完成较好的输入匹配;第二级是一个共源级堆叠一个电流源,在保持低噪声系数的同时降低功耗。通过级联共栅和共源结构进行增益补偿,所设计的LNA具有近似恒定的增益和噪声系数。采用0.18μm CMOS工艺实现后,模拟结果表明,增益和噪声系数在2~5GHz频率范围内分别为11.5dB和5.1dB,输入反射系数低于-22dB。在4GHz时,模拟得到的三阶交调点为-10dBm。在1.8V电源电压下,LNA的功耗约为11mW。  相似文献   

11.
针对X频段多波束有源相控阵系统的高集成、小型化、多波束等需求,设计了一款高集成、小型化的瓦片式八波束接收组件,该组件基于多层印制板技术,纵向实现了众多有源器件以及八套波束合路网络高密度布局,实现了组件的高集成化;针对组件的八波束合成需求,基于Wilkinson功分器的形式设计了一款小型化的高效合路网络,在7.5-9 GHz范围内,其插入损耗小于13 dB,端口间隔离度小于-20 dB,输出驻波比小于1.2,通道间幅相一致性良好;为降低组件内部信号的传输损耗,对组件内部的垂直互联结构进行了建模分析,得到不同结构参数对其传输性能的影响,通过优化结构参数的方法实现信号的低损耗传输。在此基础上对组件进行了加工实现,经测试,在7.5-9 GHz范围内,组件输出通道增益大于18 dB,输出驻波比小于1.5,通道间相位一致性小于±5°,尺寸仅有80 mm × 80 mm × 7.66 mm。  相似文献   

12.
提出了一种新型的三明治结构MEMS微波功率传感器结构,与传统传感器相比,新结构由于采用了垂直传热方式而具有较小的热损耗。在输入相同功率的情况下,模拟了热电堆的温度分布,三明治结构热电堆的温度高于传统结构,因此具有更高的灵敏度。同时模拟了两种结构的阻抗匹配特性,其差异不大,在1~6GHz的频率范围内,三明治结构的回波损耗小于-30dB;在6~20GHz的频率范围内,其回波损耗小于-20dB,显示了良好的匹配特性。  相似文献   

13.
提出了一个低噪声、高线性的超宽带低噪声放大器(UWB LNA).电路由窄带PCSNIM LNA拓扑结构和并联低Q负载结构组成,采用TSMC 0.18 μm RFCMOS工艺,并在其输入输出端引入了高阶带通滤波器.仿真结果表明,在1.8V直流电压下LNA的功耗约为10.6 mW.在3 GHz~5 GHz 的超宽带频段内,...  相似文献   

14.
A Ka‐band power divider/combiner with dual magnetic coupling semicircular ring probes is proposed in this paper. Firstly, a broadband microstrip‐to‐waveguide transition with semicircular ring probe is designed based on the side‐inserted structure of magnetic field excitation in a rectangular waveguide. The insertion loss of the proposed transition is less than 0.7 dB in Ka‐band assisted by the dual symmetrical broadband probes and rectangular waveguide. Then, the divider/combiner is proposed using the new transition with magnetic coupling from narrow wall into the rectangular waveguide. The bandwidth of the divider/combiner is more than 9 GHz (from 27 to 36.7 GHz), and the insertion loss of the single divider/combiner is less than 3.3 dB. Finally, the performance of the proposed divider/combiner is validated through simulations and measurements. The proposed design has potential applications in microstrip circuits.  相似文献   

15.
In this article, a dual‐band filtering power divider with unequal power‐division ability is proposed. Different from conventional equal power dividers constructed by filters or coupled resonators, noncoupled structures are employed in this design. As a result, low‐loss characteristic is realized for the proposed power divider. In this proposed structure, the dual‐band unequal power allocation is realized by replacing conventional single‐band λ/4 transformers with dual‐band ones (T‐junction structures). Three identical λ/4 stepped impedance resonators are properly attached to all the three ports of the proposed power divider to generate an extra transmission zero between two operational bands. Therefore, a filter‐like shaping in its S‐parameter results is obtained. A resistor is located between two outputs for output isolation. Mathematical derivations of the overall design procedure are also provided based on the circuit models and transmission line theory. Meanwhile, a resistor for output isolation is also included between two outputs, whose value can be calculated using given equations. For validation, a prototype operating at 0.9 and 2.1 GHz are designed, fabricated, and measured. The isolations between two outputs are 30 and 26 dB while the phase differences are only 2.5°and 4.9° at 0.9 and 2.1 GHz in the measurement, indicating good consistence of outputs. Measured |S21| and |S31| are ?(1.76 + 0.3) dB, ?(4.77 + 0.2) dB at 0.9 GHz and ?(1.76 + 0.6) dB, ?(4.77 + 0.5) dB at 2.1 GHz.  相似文献   

16.
为增加火灾探测天线频带范围,基于微带贴片天线,采用凹槽加载技术,设计了中心频率在Ku(12.4~18.0 GHz)波段的双频微带单元天线.利用HFSS软件对其建模、仿真及优化,结果表明,该单元天线在14.8 GHz和16.1 GHz时回波损失达到最小值,且回波损失小于-10 dB的带宽分别为600MHz和390 MHz.利用该单元天线,进而设计了一款2×2阵列天线,实测结果表明:该阵列天线具有很好的双频谐振特性,在14.3~14.9 GHz和15.7 ~16.1 GHz频带内既保留了原单元天线好的回波损耗特性,又提高了增益,使两个频段最大增益分别达到13.7 dBi和11.3 dBi.  相似文献   

17.
A micro coplanar Wilkinson power divider at X-band on GaAs substrate is presented in this paper. The proposed power divider introduces a size reduction method, and the length of the transmission line is reduced to λ/8 (at 10 GHz). Since the two segments of the two edge coupled quarter-wave asymmetric coplanar striplines (ACPSs) with finite-width ground plane are closed to each other, their characteristic parameters, such as characteristic impedance and attenuation coefficient, are obtained using the quasi-static conformal mapping technique (CMT) of coupled coplanar waveguide (CCPW) with finite-width ground plane. S-parameters for the power divider are deduced in the case of quasi-static TEM even–odd mode. The fabrication process is compatible with the GaAs MMIC process. The measured S-parameters are compared with the simulated results of HFSS v.11 and the calculated results of TEM even–odd analysis. Simulated results show that it has reflection loss less of 16.5 dB and insertion loss less of 3.6 dB. Measured results show that the divider has reflection loss less of 15.0 dB and insertion loss less of 3.5 dB. Compared with conventional Wilkinson power divider, the length of the power divider is shortened from 2,620 to 1,570 μm.  相似文献   

18.
In this article, a broadband microstrip‐to‐waveguide transition with antisymmetric tapered probe as well as a W‐band power divider/combiner using dual proposed antisymmetric tapered probes is presented. Because of tapered microstrip shapes and metallic steps, the proposed transition is proved to be broadband, efficient, and compact. The insertion loss of the transition sample is less than 0.56 dB between 75 GHz and 100 GHz. Under the assistance of the gradually changed waveguide and dual parallel tapered probes, the operating band of the power divider/combiner has been significantly improved, which is adequate to work in the whole W‐band. A back‐to‐back prototype of the divider/combiner is fabricated and measured. The measured insertion loss of the single divider/combiner is less than 0.29 dB between 90 GHz and 100 GHz, and agrees well with the simulations. Because the circuit size is smaller than 8.0 mm × 2.2 mm (Thanks to the excellent performance and compact size), the proposed design can find wide applications in miniaturized MCM/MMIC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号