首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This work proposes a new adaptive terminal iterative learning control approach based on the extended concept of high‐order internal model, or E‐HOIM‐ATILC, for a nonlinear non‐affine discrete‐time system. The objective is to make the system state or output at the endpoint of each operation track a desired target value. The target value varies from one iteration to another. Before proceeding to the data‐driven design of the proposed approach, an iterative dynamical linearization is performed for the unknown nonlinear systems by using the gradient of the nonlinear system with regard to the control input as the iteration‐and‐time‐varying parameter vector of the equivalent linear I/O data model. By virtue of the basic idea of the internal model, the inverse of the parameter vector is approximated by a high‐order internal model. The proposed E‐HOIM‐ATILC does not use measurements of any intermediate points except for the control input and terminal output at the endpoint. Moreover, it is data‐driven and needs merely the terminal I/O measurements. By incorporating additional control knowledge from the known portion of the high order internal model into the learning control law, the control performance of the proposed E‐HOIM‐ATILC is improved. The convergence is shown by rigorous mathematical proof. Simulations through both a batch reactor and a coupled tank system demonstrate the effectiveness of the proposed method.  相似文献   

2.
Computational complexity and model dependence are two significant limitations on lifted norm optimal iterative learning control (NOILC). To overcome these two issues and retain monotonic convergence in iteration, this paper proposes a computationally‐efficient non‐lifted NOILC strategy for nonlinear discrete‐time systems via a data‐driven approach. First, an iteration‐dependent linear representation of the controlled nonlinear process is introduced by using a dynamical linearization method in the iteration direction. The non‐lifted NOILC is then proposed by utilizing the input and output measurements only, instead of relying on an explicit model of the plant. The computational complexity is reduced by avoiding matrix operation in the learning law. This greatly facilitates its practical application potential. The proposed control law executes in real‐time and utilizes more control information at previous time instants within the same iteration, which can help improve the control performance. The effectiveness of the non‐lifted data‐driven NOILC is demonstrated by rigorous analysis along with a simulation on a batch chemical reaction process.  相似文献   

3.
In this article, a novel off‐policy cooperative game Q‐learning algorithm is proposed for achieving optimal tracking control of linear discrete‐time multiplayer systems suffering from exogenous dynamic disturbance. The key strategy, for the first time, is to integrate reinforcement learning, cooperative games with output regulation under the discrete‐time sampling framework for achieving data‐driven optimal tracking control and disturbance rejection. Without the information of state and input matrices of multiplayer systems, as well as the dynamics of exogenous disturbance and command generator, the coordination equilibrium solution and the steady‐state control laws are learned using data by a novel off‐policy Q‐learning approach, such that multiplayer systems have the capability of tolerating disturbance and follow the reference signal via the optimal approach. Moreover, the rigorous theoretical proofs of unbiasedness of coordination equilibrium solution and convergence of the proposed algorithm are presented. Simulation results are given to show the efficacy of the developed approach.  相似文献   

4.
Asymptotic output‐feedback tracking in a class of causal nonminimum phase uncertain nonlinear systems is addressed via sliding mode techniques. Sliding mode control is proposed for robust stabilization of the output tracking error in the presence of a bounded disturbance. The output reference profile and the unknown input/disturbance are supposed to be described by unknown linear exogenous systems of a given order. Local asymptotic stability of the output tracking error dynamics along with the boundedness of the internal states are proven. The unstable internal states are estimated asymptotically via the proposed multistage observer that is based on the method of extended system center. A higher‐order sliding mode observer/differentiator is used for the exact estimation of the input–output states in a finite time. The bounded disturbance is reconstructed asymptotically. A numerical example illustrates the efficiency of the proposed output‐feedback tracking approach developed for causal nonminimum phase nonlinear systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, sampled‐data iterative learning control (ILC) method is extended to a class of continuous‐time nonlinear systems with iteration‐varying trial lengths. In order to propose a unified ILC algorithm, the tracking errors will be redefined when the trial length is shorter or longer than the desired one. Based on the modified tracking errors, 2 sampled‐data ILC schemes are proposed to handle the randomly varying trial lengths. Sufficient conditions are derived rigorously to guarantee the convergence of the nonlinear system at each sampling instant. To verify the effectiveness of the proposed ILC laws, simulations for a nonlinear system are performed. The simulation results show that if the sampling period is set to be small enough, the convergence of the learning algorithms can be achieved as the iteration number increases.  相似文献   

6.
For the high precise tracking control purpose of a cable‐driven manipulator under lumped uncertainties, a novel adaptive fractional‐order nonsingular terminal sliding mode control scheme based on time delay estimation (TDE) is proposed and investigated in this paper. The proposed control scheme mainly has three elements, ie, a TDE element applied to properly compensate the lumped unknown dynamics of the system resulting in a fascinating model‐free feature; a fractional‐order nonsingular terminal sliding mode (FONTSM) surface element used to ensure high precision in the steady phase; and a combined reaching law with adaptive technique adopted to obtain fast convergence and high precision and chatter reduction under complex lumped disturbance. Stability of the closed‐loop control system is analyzed with the Lyapunov stability theory. Comparative simulations and experiments were performed to demonstrate the effectiveness of our proposed control scheme using 2‐DOF (degree of freedom) of a cable‐driven manipulator named Polaris‐I. Corresponding results show that our proposed method can ensure faster convergence, higher precision, and better robustness against complex lumped disturbance than the existing TDE‐based FONTSM and continuous FONTSM control schemes.  相似文献   

7.
This paper explores the problem of random data loss at both input and output sides and proposes a compensation‐based data‐driven iterative learning control (cDDILC) to refrain from deteriorating of the control performance due to the data loss. A linear data model is first established to describe the input‐output dynamics of a repetitive control system in the iteration domain. The linear data model, which only virtually exists in the computer without any physical backgrounds, is employed as a predictive model to estimate and compensate the lost output data. Meanwhile, the lost input data is replaced by the corresponding input of the same time instant in the latest previous iterations. Then, a cDDILC is proposed by introducing two Bernoulli random variables to describe the stochastic data loss at both input and output sides. The proposed cDDILC method is data driven and independent of a precise plant model. Although the design and analysis of the cDDILC start from a MIMO linear repetitive system, one can easily extend the results to a MIMO nonlinear nonaffine one. Theoretical analysis and simulations confirm the efficiency of the proposed cDDILC method.  相似文献   

8.
In this work, we present a novel adaptive finite‐time fault‐tolerant control algorithm for a class of multi‐input multi‐output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state‐dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite‐time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a low‐complexity robust estimation‐free decentralized prescribed performance control scheme is proposed and analyzed for nonaffine nonlinear large‐scale systems in the presence of unknown nonlinearity and external disturbance. To tackle the high‐order dynamics of each tracking error subsystem, a time‐varying stable manifold involving the output tracking error and its high‐order derivatives is constructed, which is strictly evolved within the envelope of user‐specialized prescribed performance. Sequentially, a robust decentralized controller is devised for each manifold, under which the output tracking error and its high‐order derivatives are proven to converge asymptotically to a small residual domain with prescribed fast convergence rate. Additionally, no specialized approximation technique, adaptive scheme, and disturbance observer are needed, which alleviates the complexity and difficulty of robust decentralized controller design dramatically. Finally, 3 groups of illustrative examples are used to validate the effectiveness of the proposed low‐complexity robust decentralized control scheme for uncertain nonaffine nonlinear large‐scale systems.  相似文献   

10.
In this work, we study the performance‐guaranteed event‐triggered control for a class of uncertain nonlinear systems in strict‐feedback form subject to input saturation and output constraint. The prescribed performance (ie, convergence rate, tracking error accuracy) and output constraint are firstly taken into account for nonlinear systems with event‐triggered input. By blending a speed transformation into the barrier Lyapunov function and introducing an intermediate variable to the system, two different event‐triggered control schemes are proposed for systems with and without saturation, respectively. Each scheme has two rules to determine triggering time sequences, one for control signal updating and the other for control signal transmission with the latter being a subsequence of the first. Meanwhile, it is proved that the tracking error converges to a preset compact set around zero at the prescribed decay rate and the output is maintained within a given bound at all times. Simulation verification also confirms the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号