首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piezoresistive sensing is one of the most frequently used transduction mechanism in pressure sensors. The piezoresistor placement on the diaphragm and the piezoresistor configuration play a pivotal role in determining the output characteristics of a pressure sensor. In this work, two different pressure sensors with different transverse piezoresistor configurations are studied to determine the effect of piezoresistor configuration on the sensitivity and non-linearity of the pressure sensors. A sensor structure with a square diaphragm size of 1,480 µm edge length and diaphragm thickness of 50 µm is chosen for the study. The design considerations for piezoresistor placement and the piezoresistor shapes are discussed in detail. The sensors are fabricated with bulk micromachined diaphragm and polysilicon piezoresistors. The sensor characteristics are determined for three temperatures, namely, ?5, 25 and 55 °C and for a pressure range of 0–30 Bar. The characterization results indicate that the design with two piezoresistor arms in transverse piezoresistor configuration (2 × 2 Design) has higher sensitivity than the single arm configuration (2 × 1 Design) by about 25 % at 25 °C but it also has a higher non-linearity. The study shows the importance of selecting the proper piezoresistor configuration in the design of pressure sensors.  相似文献   

2.
Kapton-based flexible pressure sensor arrays are fabricated using a new technology of film transfer. The sensors are dedicated to the non-invasive measurement of pressure/force in robotic, sport and medical applications. The sensors are of a capacitive type, and composed of two millimetric copper electrodes, separated by a polydimethylsiloxane (PDMS) deformable dielectric layer. On the flexible arrays, a very small curvature radius is possible without any damage to the sensors. The realized sensors are characterized in terms of fabrication quality. The inhomogeneity of the load free capacitances obtained in the same array is ±7 %. The fabrication process, which requires 14 fabrication steps, is accurate and reproducible: a 100 % transfer yield was obtained for the fabrication of 5 wafers gathering 4 sensor arrays each (215 elementary sensors). In the preliminary electro-mechanical characterization, a sensor (with a PDMS dielectric layer of 660 μm thickness and a free load capacitance of 480 fF) undergoes a capacitance change of 17 % under a 300 kPa normal stress.  相似文献   

3.
In this work, experiments and three-dimensional numerical calculations of fluid flow through diverging microchannels were carried out with the aim of bringing out differences between flow in uniform and nonuniform passages. Deionized water was used as the working fluid in the experiments where the effects of mass flow rate (8.33 × 10?6 to 8.33 × 10?5 kg/s), microchannel hydraulic diameter (118–177 µm), length (10–30 mm) and divergence angle (4°–16°) on pressure drop were studied. The results are analyzed in detail with the help of numerical data. The pressure drop exhibits a linear dependence on the mass flow rate, whereas it is inversely proportional to the divergence angle and square of the hydraulic diameter. The pressure drop increases anomalously at 16°, suggesting that flow reversal occurs between 12° and 16°, which agrees with the corresponding value at the conventional scale. For the purpose of predicting pressure drop using straight microchannel theory, an equivalent hydraulic diameter was defined. It is observed that the equivalent hydraulic diameter, located at one-third of the diverging microchannel length from the inlet, becomes mostly independent of the mass flow rate, microchannel hydraulic diameter, length and divergence angle. The pressure drop for a diverging microchannel becomes equal to an equivalent hydraulic diameter uniform cross-section microchannel, suggesting that conventional correlations for straight microchannels can also be applied to diverging microchannels. The data presented in this work are of fundamental importance and can help in optimization of diffuser design used for example in valveless micropumps.  相似文献   

4.
In this work, we report a SU-8-based fully integrated miniaturized inductively powered LC transponder for generic implantable wireless sensor applications. It consists of a 1 mm diameter octagonal spiral inductor and a micro fabricated MIM (metal insulator metal) capacitor. Polyvinylidene Fluoride–Trifluoroethylene (PVDF–TrFE) copolymer is applied as a dielectric material for the capacitor fabrication due to its high dielectric constant. The 1 mm diameter, 154 nH spiral inductor is built on top of the capacitor. The capacitor and the inductor are in parallel connection through SU-8 via holes. SU-8 is used as a packaging material due to its biocompatibility, and also it serves as an insulator between the capacitor and the spiral inductor. The operating frequencies of the LC tanks are decided by the sizes of the capacitors (45 × 45, 55 × 55, 95 × 95 and 100 × 100 μm), and measured operating frequency range is from 385 to 485 MHz. The fabricated LC tanks are held to the power transmitting coil coaxially at distances of 2, 5, 7 and 10 mm, and rectified induced voltage at the LC tank is 8.5 V with 29 dBm input power at a 5 mm distance.  相似文献   

5.
We present a two-axis micro fluxgate sensor on single chip for electronic compassing function. To measure X- and Y-axis magnetic fields, functional two fluxgate sensors were perpendicularly aligned and connected each other. The fluxgate sensor was composed of square-ring shaped magnetic core and solenoid excitation and pick-up coils. The solenoid coils and magnetic core were separated by benzocyclobutane which had high insulation and good planarization characters. Copper coil patterns of 10 μm width and 6 μm thickness were electroplated on Ti (300 Å)/Cu (1,500 Å) seed layers. 3 μm thick Ni0.8Fe0.2 (permalloy) film for the magnetic core was also electroplated under 2,000 gauss. Excellent linear response over the range of ?100 μT to +100 μT was obtained with the sensitivity of ~280 V/T. Actual chip size was 3.1×3.1 mm2. The sine and cosine signals of two-axis fluxgate sensor had a good function of azimuth compass.  相似文献   

6.
Motivated by quantification of micro-hydrodynamics of a thin liquid film which is present in industrial processes, such as spray cooling, heating (e.g., boiling with the macrolayer and the microlayer), coating, cleaning, and lubrication, we use micro-conductive probes and confocal optical sensors to measure the thickness and dynamic characteristics of a liquid film on a silicon wafer surface with or without heating. The simultaneous measurement on the same liquid film shows that the two techniques are in a good agreement with respect to accuracy, but the optical sensors have a much higher acquisition rate up to 30 kHz which is more suitable for rapid process. The optical sensors are therefore used to measure the instantaneous film thickness in an isothermal flow over a silicon wafer, obtaining the film thickness profile and the interfacial wave. The dynamic thickness of an evaporating film on a horizontal silicon wafer surface is also recorded by the optical sensor for the first time. The results indicate that the critical thickness initiating film instability on the silicon wafer is around 84 μm at heat flux of ~56 kW/m2. In general, the tests performed show that the confocal optical sensor is capable of measuring liquid film dynamics at various conditions, while the micro-conductive probe can be used to calibrate the optical sensor by simultaneous measurement of a film under quasi-steady state. The micro-experimental methods provide the solid platform for further investigation of the liquid film dynamics affected by physicochemical properties of the liquid and surfaces as well as thermal-hydraulic conditions.  相似文献   

7.
In this paper, performance of piezoelectrically actuated pyramidal valveless micropumps is studied experimentally in detail. Valveless micropumps based on silicon and glass substrate are fabricated using MEMS technology. Two different sizes of micropumps having overall dimensions of 5 mm × 5 mm × 1 mm and 10 mm × 10 mm × 1 mm are fabricated and characterized. In the fabricated micropumps, the thickness of silicon diaphragm is <20 µm which gives the advantage of operating pump at low voltage with excellent stability and consistency. The performance of micropumps in terms of flowrate and backpressure is evaluated for a wide range of driving frequency and actuating voltages. The maximum flowrate of water in the 10-mm micropump is 355 µl/min and backpressure of 3.1 kPa at zero flowrate for an applied voltage of 80 V at frequency 1.05 kHz. The reported micropumps have low footprint, high flowrate and backpressure. Thus, these micropumps are especially suited for biological applications as these can withstand adequate amount of backpressure. Comparative study of the performance of these micropumps with those available in the literature brings out the efficacy of these micropumps.  相似文献   

8.
This paper reports a novel dual-axis microelectromechanical systems (MEMS) capacitive inertial sensor that utilizes multi-layered electroplated gold. All the MEMS structures are made by gold electroplating that is used as a post complementary metal-oxide semiconductor (CMOS) process. Due to the high density of gold, the Brownian noise on the proof mass becomes lower than those made of other materials such as silicon in the same size. The single gold proof mass works as a dual-axis sensing electrode by utilizing both out-of-plane (Z axis) and in-plane (X axis) motions; the proof mass has been designed to be 660 μm × 660 μm in area with the thickness of 12 μm, and the actual Brownian noise in the proof mass has been measured to be 1.2 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in Z axis) and 0.29 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in X axis) at room temperature, where 1 G = 9.8 m/s2. The miniaturized dual-axis MEMS accelerometer can be implemented in integrated CMOS-MEMS accelerometers to detect a broad range of acceleration with sub-1G resolution on a single sensor chip.  相似文献   

9.
Capacitive inclination sensors have the advantage that they can easily provide a linear analog output with respect to inclination. Although inclination sensors featuring this advantages are already commercially available, they are generally too large. We fabricated a micro-capacitive inclination sensor by a combination of a resin forming method and a mold. Electrodes of the sensor are 40 μm in a gap and 12 mm2 in area. The sensor detects difference of capacitance, which varies with movement of silicone oil accompanying with inclination of the sensor. Since the dimensions of the sensing region are 5 × 5 × 3 mm3 this inclination sensor is expected to be widely used in fields where efficient and reliable position control is a primary factor to be considered. The use of resins is also expected to contribute to a reduction in the costs of materials. We successfully fabricated a micro inclination sensor as a molded product. In future, we will wire up the device to complete this inclination sensor, and will then conduct performance evaluations. If techniques using resin-molded parts are introduced to the low-cost mass-production of Micro Electro Mechanical Systems devices, the range of applications will further expand to new areas of technology and industry.  相似文献   

10.
This paper addresses the cross‐calibration of the infrared channels 4 (3.9 µm), 9 (10.8 µm) and 10 (12.0 µm) of the Spinning Enhanced Visible and Infra‐Red Imager (SEVIRI) onboard the Meteosat Second Generation 1 (MSG1) satellite with the channels of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard Terra. The cross‐calibrations, including the Ray‐Matching (RM) method and the Radiative Transfer Modelling (RTM) method, were developed and implemented over a tropical area using SEVIRI and MODIS measurements of July 2005 and July 2006 with absolute view zenith angle differences (|ΔVZA|)<0.5°, absolute view azimuth angle differences (|ΔVAA|)<0.5° and absolute time differences (|ΔTime|)<10 min. The results obtained by the RM and RTM methods revealed calibration discrepancies between the two sensors. The results obtained by the RM method were consistent with previously published results. The results obtained by the RTM method were consistent with the results obtained by the RM method if the temperature differences caused by the spectral differences between the two sensors were taken into account. From the cross‐calibration results obtained by the two methods, the use of the results obtained by the RTM method to recalibrate the SEVIRI data is recommended. The recalibrations remove the overestimation of the Land Surface Temperature (LST) retrieved from the SEVIRI data by a split‐window method.  相似文献   

11.
In this paper, a low-temperature integrated-circuit (IC)-compatible process for fabricating metallic microchannels is described. Arrays of 1-100 metallic microchannels have been fabricated on silicon and glass substrates. The process can be extended to many planar substrate materials including polymers and ceramics. The microchannels are formed using microelectro-formed metals. The microchannels demonstrated in this paper use nickel as the structural material and gold as the surface coating on the inside walls of the microchannels. The inner dimensions of the individual microchannels fabricated to date range from 30 μm to 1.5 mm in width, 0.5 mm to several centimeters in length, and 5-100 μm in thickness. The wall thickness ranges from 5 to 50 μm. The microchannel fabrication technology enables the fabrication of surface microchannels with a relatively large cross-sectional area. The metallic microchannels can be fabricated to extend from the substrate edge. Interfacing schemes are given for attaching external pressure feeds  相似文献   

12.
Functional micro- and nanosized metal oxide thin film structures are very promising candidate for future gas-sensors. Their reduced size offers an increased surface to volume ratio thus improving sensitivity and sensor performance. Whilst most experimental nanostructures are produced using a bottom-up approach, a top-down sputtering technique for structuring nano-sized gas sensitive metal oxide areas is presented in this letter. Oxidised silicon wafers were used as substrates. The silicon dioxide film of 1 μm thickness was prepared by thermal oxidation in order to insulate the gas sensing elements from the substrate. The sensor chips had an overall size of (1.5 × 1.5) mm2 onto which a Ta/Pt film (20/200 nm thickness) was deposited and patterned to act as electrodes, heater and temperature sensor. In a second step micro-scaled tin dioxide layers (60 nm thick, 5 μm width) were deposited by sputtering techniques and photolithographical patterning between the platinum micro-electrodes (4 μm gap). Finally, the width of the stripes was reduced using focused ion beam technology to obtain the desired size and structure. This enables the control of the dimensions of the structures down to the resolution limit of the FIB-system which is about 10 nm. The structural and electrical characterisation of the sensors and their responses during exposure to several test gases including O2, CO, NO2 and H2O are presented as well.  相似文献   

13.
In this paper, we present the design and modeling of the electrical–mechanical behavior of a novel microsensor to detect magnetic fields in two orthogonal directions (2D). This microsensor uses a simple silicon resonant structure and a Wheatstone bridge with small p-type piezoresistors (10 × 4 × 1 μm) to improve the microsensor resolution. The resonant structure has two double-clamped silicon beams (1000 × 28 × 5 μm) and an aluminum loop (1 μm thickness). The microsensor design allows important advantages such as small size, compact structure, easy operation and signal processing, and high resolution. In addition, the microsensor design is suitable to fabricate using silicon on insulator (SOI) wafers in a standard bulk micromachining process. An analytical model is developed to predict the first bending resonant frequency of the microsensor structure using Macaulay and Rayleigh methods, as well as the Euler–Bernoulli beam theory. Air and intrinsic damping sources of the microsensor structure are considered for its electrical–mechanical response. The mechanical behavior of the microsensor is studied using finite element models (FEMs). For 10 mA of root mean square (RMS) excitation current and 10 Pa air pressure, this microsensor has a linear electrical response, a fundamental bending resonant frequency of 52,163 Hz, and a high theoretical resolution of 160 pT.  相似文献   

14.
Polymeric microneedles fabricated by microinjection molding techniques have been demonstrated using Topas®COC as the molding plastic material. Open-channel microneedles with cross-sectional area of 100 μm × 100 μm were designed and fabricated on top of a shank of 4.7 mm in length, 0.6 mm in width, and 0.5 mm in depth. The tip of the microneedle has a round shape with a radius of 125 μm as limited by the drill used in fabricating the mold insert. The injection molding parameters including clamping force, shot size, injection velocity, packing pressure, and temperature were characterized in order to achieve best reproducibility. Experimentally, a fabricated microneedle was successfully injected into a chicken leg and a beef liver freshly bought from a local supermarket and about 0.04 μL of liquid was drawn from these tissues immediately. This new technology allows mass production of microneedles at a low cost for potential biomedical applications.  相似文献   

15.
Bonding is an essential step to form microchannels or microchambers in lab-on-a-chip applications. In this paper, we present a novel plastic thermal bonding technique to seal and form large area microchambers (planar characteristic width and length on the order of 1 mm and characteristic thickness on the order of 10–100 μm) without collapse by introducing a holed pressure equalizing plate (HPEP) that includes holes of the same size and shape as the microchambers. To demonstrate the proposed technique, two types of large area microchambers [(1) 20 × 10 mm and 40 μm thick and (2) 12 × 2.5 mm and 120 μm thick] with microchannels were designed and replicated on plastic substrates by means of hot embossing and injection molding processes with prepared two nickel mold inserts. The replicated large area microchambers as well as the microchannels in the plastic lab-on-a-chip were successfully sealed (i.e., no leakage) and formed without any collapse by the proposed thermal bonding technique with the help of the HPEP.  相似文献   

16.
Pumping in microfluidic devices is an important issue in actuating fluid flow in microchannel, especially that capillary force has received more and more attractions due to the self-driven motion without external power input. However, less 2D simulation was done on the capillary flow in microchannel especially the meander microchannel which can be used for mixing and lab-on-a-chip (LOC) application. In this paper, the numerical simulation of the capillary flow in the meander microchannel has been studied using computer fluid dynamic simulation software CFD-ACE+. Different combinations of channel width in the X-direction denoted as Wx and Y-direction denoted as Wy were designed for simulating capillary flow behavior and pressure drop. The designed four types of meander microchannels (Wx × Wy) were 100 × 100 μm, 100 × 200 μm, 50 × 200 μm, and 50 × 400 μm. In this simulation results, it is found that the capillary pumping speed is highly depending on the channel width. The large speed change occurs at the turning angle of channel width change from Wx to Wy. The fastest pumping effect is found in the meander channel of 100 × 100 μm, which has an average pumping speed of 0.439 mm/s. The slowest average flow speed of 0.205 mm/s occurs in the meander channel of 50 × 400 μm. Changing the meander channel width may vary the capillary flow behavior including the pumping speed and the flow resistance as well as pressure drop which will be a good reference in designing the meander microchannels for microfluidic and LOC application.  相似文献   

17.
In this work we shed light on the microfluidics of a miniaturized liquid bridge that forms the central part of a so-called “capillary gap sampler,” a novel device for rapid and seamless injection of nanoliter sample volumes into an electrospray ionization mass spectrometer (ESI-MS). Parameters relevant for sample flush-out at the liquid bridge and in the spray capillary were identified by systematic variation of the capillary dimensions, the linear buffer flow rate (2.1–34 mm/s) and molecular weight of the analytes (0.5–30 kDa). We found that a reduction in capillary wall thickness by a factor of 1.6 significantly influences analyte peak shapes, leads to an inversion of the relationship between peak width and analyte molecular weight, and allows a fivefold decrease in peak width for large molecules down to 5 s. The results could be verified and explained by simulations, in which the presence of diffusion-controlled “dead zones” at the liquid bridge and dispersion in the spray tip that depend on analyte molecular weight were identified as key factors relevant for the sample flush-out process. The merging of simulations and experimental data gives useful hints toward the re-design of a spray tip as built-in ESI-MS interface for an optimized gap sampler performance.  相似文献   

18.
We proposed and fabricated an integrated structure of microchannels consists of three different functional PMMA layers for post-genome analysis, gene diagnosis, and screenings of useful materials for pharmaceutical. This integrated structure with 96 microchip capillary electrophoresis units in one chip is characterized as the simple structure with low cost and new aspects of the serial unit bio-chemical operation from DNA amplification to their analysis using microchip capillary electrophoresis. The design of the structure was performed using computational fluid dynamics, heat transmission, and electrophoresis simulation. To improve DNA separation resolution, microchannel with narrow width at the corner was adapted. The deep X-ray lithography process using synchrotron radiation “New SUBARU”, nano-imprint, and fusion bonding without bonding adhesive was applied for the fabrication of the integrated structure of microchannels. It was demonstrated that the proposed integrated structure of microchannels results in a good performance of the on-chip DNA amplification and separation in a small MCE unit area of 9 mm × 9 mm.  相似文献   

19.
Piezoelectric micro-power generator (PMPG) converts mechanical vibration energy into electric energy via piezoelectric effects. In cardiac pace makers, the use of PMPG eliminates the need for a traditional lithium iodide battery replacement. In this paper we design and optimize PMPG that is able to harvest the mechanical movement of the heart beat to be converted into usable electrical power in frequency range 1–1.7 Hz. Eight control parameters are selected: which are proof mass material, piezoelectric material, proof mass length, proof mass thickness, piezoelectric layer width, piezoelectric layer thickness, silicon nitride layer width, silicon nitride layer thickness. Orthogonal arrays of Taguchi method for these eight parameters mentioned with three levels and signal-to-noise (S/N) ratio, and ANOVA analysis is studied to determine the optimum design. COMSOL Multiphysics ver. 4.2 is used in 18 different simulations. The maximum output power and highest efficiency designed at 1.2 Hz is equivalent to 72 beat per min. Both Taguchi and ANOVA confirms the same results of determining the parameter of having the most influence on the generated output power at 1.2 Hz in descending order: which are piezoelectric material of PZT-5A, proof mass length of 5 mm, piezoelectric layer thickness of 30 µm, proof mass thickness of 4 mm, piezoelectric layer width of 0.12 mm, silicon nitride layer width of 0.16 mm, silicon nitride layer thickness of 30 µm, and proof mass material of aluminum. Eigen frequency analysis for the first six modes of operation for PMPG frequencies are: 1.2 HZ, 5.4 Hz, 6.9 Hz, 29,7 Hz, 694.8 Hz, 708.3 Hz. The first mode of operation is selected as operation mode and shows that 93 % of PMPG’s total displacement and output power was produced in the range of 1–1.4 Hz, therefore PMPG can work when the heart rate between 60 and 84 bpm. Transient analysis performed at 1.2 Hz reaches the steady state before the first 10 cycles with output power density of 23.13 µW/cm3, which is suitable for powering cardiac pace maker.  相似文献   

20.
This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength λ < 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号