共查询到20条相似文献,搜索用时 0 毫秒
1.
在目标跟踪系统中,因通信延迟会出现传感器量测无序到达融合中心的现象,由此产生无序量测(OOSM)融合问题。针对非线性条件下的OOSM问题,在现有算法的基础上,提出了基于快速边缘粒子滤波(FMPF)的处理算法。新算法在FMPF框架下,结合前向预测滤波思想来处理OOSM问题。将目标运动状态向量分为线性和非线性2个子向量,并分别采用相应的无序处理算法进行估计。算法可以处理单步延迟和多步延迟的情形下的无序问题。最后理论分析和仿真实验表明:新算法能有效处理OOSM问题,且降低了算法的计算复杂度,提高了算法实时性。 相似文献
2.
3.
4.
5.
A novel networked data-fusion method is developed for the target tracking in wireless sensor networks (WSNs). Specifically, this paper investigates data fusion scheme under the communication constraint between the fusion center and each sensor. Such a message constraint is motivated by the bandwidth limitation of the communication links, fusion center, and by the limited power budget of local sensors. In the proposed scheme, each sensor collects one noise-corrupted sample, performs a quantizing operation, and transmits quantized message to the fusion center. Then the fusion center combines the received quantized messages to produce a final estimate. The novel data-fusion method is based on the quantized measurement innovations and decentralized Kalman filtering (DKF) with feedback. For the proposed algorithm, the performance analysis of the estimation precision is provided. Finally, Monte Carlo simulations show the effectiveness of the proposed scheme. 相似文献
6.
7.
融合中心如何处理无序局部数据,对分布式多传感器系统的运行品质至关重要.本文将系统中的局部估计转化为伪测量,将分布式融合估计转化为二级集中式融合估计.将所得的伪测量兼分布式融合估计算法与单步延迟的无序测量数据(out-of-sequencemeasurements,OOSM)最优滤波-A1算法进行组合,得出了分布式多传感器系统的最优单步延迟无序航迹(out-of-sequence tacks,OOST)估计算法,适用于航迹无序局部数据融合估计.该算法具有最优估计性能. 相似文献
8.
无序量测(OoSM)是多传感器融合系统亟需解决的不可回避的问题.在总结相关文献基础上,对OoSM进行了分类,从单步延时OoSM滤波、多步延时OoSM滤波、多个OoSM滤波、非线性非高斯条件OoSM粒子滤波算法、杂波/机动目标条件OoSM跟踪算法等方面,按照由简单到复杂的研究路线综述了国外开展的相关研究,并对未来研究方向进行了探讨与展望. 相似文献
9.
针对非线性环境中存在的机动目标跟踪问题,对基于贝叶斯估计的粒子滤波器进行研究,为解决混合退火粒子滤波重要密度函数构造的问题,在混合退火粒子滤波的基础上,通过对系统状态和观测粒子方差的研究,提出了非线性环境下动态退火参数粒子滤波的改进算法,在混合退火粒子滤波中引入动态退火参数来构造高效的重要密度函数,提高了混合退火粒子滤波的跟踪精度,应用该滤波方法对机动目标模型进行仿真,并对多种滤波跟踪算法进行性能测试和比较,仿真实验结果表明,在非线性环境下该粒子滤波方法可行有效. 相似文献
10.
针对滞后无序量测((OOSM)的单步滞后滤波问题,在现有算法的基础上,推导非线性单步滞后无序量测更新方程.提出用UT变换来计算其中涉及到的状态向量以及相关量测之间的协方差,从而有效解决了状态转移方程为线性而量测方程为非线性的非线性Gauss系统的单步滞后OOSM问题.然后,针对多传感器单步滞后OOSM情况,给出了基于U... 相似文献
11.
CHEN JinGuang LI Jie & GAO XinBo School of Electronic Engineering Xidian University Xi’an China School of Computer Science Xi’an Polytechnic University Xi’an 《中国科学:信息科学(英文版)》2011,(3):664-673
Aiming at the out-of-sequence measurement (OOSM) problem, the update equations of the nonlinear single-step-lag OOSM are derived based on the existing methods. By introducing the unscented transformation (UT), the covariance between state vector and corresponding measurement vector are computed such that the single-step-lag OOSM can be effectively solved under the nonlinear Gaussian system with nonlinear measurement equation and linear dynamic equation. Furthermore, a single-step-lag OOSM fusion algorithm b... 相似文献
12.
多传感器跟踪系统自适应Kalman滤波融合 总被引:2,自引:0,他引:2
多传感器目标跟踪的一个实际问题是如何获得目标的过程噪声信息,以获得较好的跟踪性能。针对多传感器分布式估计融合系统,利用这种自适应技术给出了一种自适应Kalman滤波的融合方法,它具有与中心式相近的跟踪性能。计算机模拟结果表明:这种方法具有较优良的性能。 相似文献
13.
14.
针对粒子滤波(PF)重采样后造成的粒子枯竭现象的问题,提出了一种基于改进重采样的粒子滤波无线传感器网络目标跟踪算法.该算法避免了残差重采样算法中的残留粒子重采样问题,减少了计算时间;通过产生新的粒子,增加了粒子的多样性,从而改善了粒子枯竭现象.仿真实验结果表明:改进重采样的粒子滤波算法提高了目标跟踪精度,降低了跟踪误差. 相似文献
15.
16.
In this paper, we consider the problem of the performance bound of a nonlinear filtering problem corresponding to tracking an extended target in cluttered environments (i.e., with false alarms and missed detections). The high resolution sensor obtains the measurements of the position and the extent of the extended target whose shape is modeled by an ellipse. The posterior Cramer-Rao lower bound (PCRLB) provides a useful tool to evaluate the best achievable performance of the nonlinear filtering problem. The bounds of the traditional kinematic state estimation are calculated using the point and the extended target model. It is shown in this paper that the bound of extended target tracking is smaller than that of point model because more information is utilized. The bounds are calculated to examine the influence of the measuring accuracy, the geometry between the sensor and the target, the prior knowledge of the target, and the environmental circumstance. In a cluttered environment, the PCRLB is calculated by IRF (information reduction factor), MSC (measurement sequence conditioning), and MESC (measurement existence sequence conditioning) approaches. The simulation results also illustrate the relationship of the three methods. 相似文献
17.
Qiang Zhang Chaojie Zhang Senlin Zhang 《International journal of systems science》2013,44(16):2918-2927
Traditional sonar-array-based target tracking algorithms may be unsuitable for on-demand tracking missions, since they assume that the sonar arrays should be towed or mounted by a submarine or a ship. Alternatively, underwater wireless sensor networks can offer a promising solution approach. First, each underwater node is battery-powered, so saving energy expenditure is a critical issue. Instead of keeping all sensor nodes active, this paper provides a local node selection (LNS) scheme which increases energy efficiency by waking up only a small part of nodes at each time. Second, considering node's limited computing ability and the real-time requirement for the tracking algorithm, instead of employing the centralised fusion structure, we utilise the distributed Kalman filtering fusion with feedback in this paper. Finally, instead of assuming one sensor node can uniquely determine target's location, a more practical range-only measurement model is proposed. Then the LNS scheme and distributed fusion with feedback are extended to our range-only measurement model. The simulation results demonstrate the efficiency of our scheme. 相似文献
18.
19.