首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land surface albedo is one of the key parameters in the radiation budget, the hydrological cycle and climate modeling studies. It is now widely understood that large errors may occur in the estimation of surface albedo without taking into consideration the anisotropy reflectance effect, which is a general feature of the earth surface. Two major anisotropic correction methods exist for the retrieval of land surface albedo under clear sky conditions. One method involves linearly converting from top of the atmosphere (TOA) albedo to surface albedo, and another is based on the inversion of the Bidirectional Reflectance Distribution Function (BRDF) model of the surface. In the present study, a new approach that utilizes an empirical model for estimating surface albedo has been proposed for snow free land surfaces under clear sky conditions. We analyzed the bidirectional reflectance data set with numerous samples representing various land cover types, which derived from POLDER/ADEOS-1 multi-angle imagery data and distributed by MEDIAS-France. Through the analysis, an empirical relation between bidirectional reflectance and albedo was established and has been discussed in detail. The proposed model can be used for direct estimation of surface albedo from a single BRF observation when the sun-target-sensor geometry is known. No BRDF model inversion scheme is necessary. The present model has no or weak dependence on the existing land surface classifications, and is insensitive to wavelength. The theoretical absolute accuracy of the estimated albedo is approximately 0.010 for visible (0.4-0.7 μm), 0.023 for near infrared (0.7-3.0 μm) and 0.016 for shortwave (0.2-3.0 μm), respectively. Albedo consistency with viewing geometry has been verified, resulting in good agreement for albedo estimated from various viewing directions. Validation of the satellite estimated albedo derived by the proposed method, using field observations were also presented and results show it can give reasonably accurate estimation. The proposed method is expected to be a suitable candidate for practical applications of albedo estimation for sensors that do not perform multi-angle observations.  相似文献   

2.
This study investigates the impact of using different combinations of Moderate Resolution Imaging Spectroradiometer (MODIS) and ancillary datasets on overall and per-class classification accuracies for nine land cover types modified from the classification system of the International Geosphere Biosphere Programme (IGBP). Twelve land cover maps were generated for Turkey using boosted decision trees (BDTs) based on the stepwise addition of 14 explanatory variables derived from a time series of 16-day MODIS composites between 2000 and 2006 (Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and four spectral bands) and ancillary climate and topographic data (minimum and maximum air temperature, precipitation, potential evapotranspiration, aspect, elevation, distance to sea and slope) at 500-m resolution. Evaluation of the 12 BDTs indicated that the BDT built as a function of all the MODIS and climate variables, aspect and elevation produced the highest degree of overall classification accuracy (79.8%) and kappa statistic (0.76) followed by the BDTs that additionally included distance to sea (DtS), and both DtS and slope. Based on an independent validation dataset derived from a pre-existing national forest map and Landsat images of Turkey, the highest overall accuracy (64.7%) and kappa coefficient (0.58) among the 12 land cover maps was achieved by using MODIS-derived NDVI time series only, followed by NDVI and EVI time series combined; NDVI, EVI and four MODIS spectral bands; and the combination of all MODIS and climate data, aspect, elevation and distance to sea, respectively. The largest improvements in producer's accuracies were observed for grasslands (+50%), barrenlands (+46%) and mixed forests (+39%) and in user's accuracies for grasslands (+53%), shrublands (+30%) and mixed forests (+28%), in relation to the lowest producer's accuracy. The results of this study indicate that BDTs can increase the accuracy of land cover classifications at the national scale.  相似文献   

3.
A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.  相似文献   

4.
Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities impacted by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained ~ 1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75° off-nadir, and at spatial resolutions ranging from 3 m to 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a land cover type-specific a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.  相似文献   

5.
Rugged land cover classification accuracies produced by an artificial neural network (ANN) using simulated moderate-resolution remote sensor data exceed overall accuracies produced using the maximum likelihood rule (MLR). Land cover in spatially-complex areas and at broad spatial scales may be difficult to monitor due to ambiguities in spectral reflectance information produced from cloud-related and topographic effects, or from sampling constraints. Such ambiguities may produce inconsistent estimates of changes in vegetation status, surface energy balance, run-off yields, or other land cover characteristics. By use of a 'back-classification' protocol, which uses the same pixels for testing as for training the classifier, tests of ANN versus MLR-based classifiers demonstrated the ANNbased classifier equalled or exceeded classification accuracies produced by the MLR-based classifier in five of six land cover classes evaluated.  相似文献   

6.
Advances in classification for land cover mapping using SPOT HRV imagery   总被引:1,自引:0,他引:1  
Abstract

High-resolution data from the HRV (High Resolution Visible) sensors onboard the SPOT-1 satellite have been utilized for mapping semi-natural and agricultural land cover using automated digital image classification algorithms. Two methods for improving classification performance are discussed. The first technique involves the use of digital terrain information to reduce the effects of topography on spectral information while the second technique involves the classification of land-cover types using training data derived from spectral feature space. Test areas in Snowdonia and the Somerset Levels were used to evaluate the methodology and promising results were achieved. However, the low classification accuracies obtained suggest that spectral classification alone is not a suitable tool to use in the mapping of semi-natural cover types.  相似文献   

7.
对MODIS、MISR和POLDER 3种由多角度卫星观测反演得到的全球地表反照率数据(无冰雪覆盖区域)短波波段(SW,0.3~5 μm)与可见光波段(VIS,0.3~0.7 μm)的黑空地表反照率(DHR)进行了相互比较。3种产品6年平均的全球均值存在显著差异,其值从大到小依次为POLDER\,MISR和MODIS。3种产品的纬向平均在35°N以北区域表现出较大的差异。3种产品彼此之间相关性比较高,其中MODIS与MISR产品的相关性最强,MISR与POLDER产品的相关性最低,短波波段的相关系数(r) 分别为0.939与0.911。3种产品在可见光波段的相关性大于短波波段。在不同地表类型上,3种产品表现出了大致相似的差异,表明其对地表类型并不敏感。对气溶胶的分析表明:MODIS与MISR的550 nm气溶胶光学厚度(AOD)较为相似,其差异不足以解释DHR的差别;但是POLDER的865 nm AOD明显小于MISR,因此可以认为是由于POLDER的AOD估算偏低,导致了POLDER的DHR值大于MODIS与MISR。  相似文献   

8.
Land cover of a Mediterranean region was classified within an artificial neural network (ANN) on a per-field basis using Landsat Thematic Mapper (TM) imagery. In addition to spectral information, the classifier used geostatistical structure functions and texture measures extracted from the co-occurrence matrix. Geostatistical measures of texture resulted in a more accurate classification of Mediterranean land cover than statistics derived from the co-occurrence matrix. The primary advantage of geostatistical measures was their robustness over a wide range of land cover types, field sizes and forms of class mixing. Spectral information and the variogram (geostatistical texture measure) resulted in the highest overall classification accuracies.  相似文献   

9.
Recent developments in global land-cover mapping have focused on spatial resolution improvement with more heterogeneous features to integrate spatial, spectral and temporal information. In this study, hundreds of features derived from four seasonal Landsat 8 OLI (Operational Land Imager) spectral bands, Moderate Resolution Imaging Spectroradiometer (MODIS) time series vegetation index (VI) data, night-time light (NTL), digital elevation models (DEM) and climatic variables were used for land cover mapping with a target 30-m resolution for the whole African continent. In total, 49,007 training samples (from 11,231 locations) and 23,803 validation samples (from 5,414 locations) interpreted from seasonal Landsat, MODIS Normalized Difference Vegetation Index (NDVI) time series and high-resolution images in Google Earth were used for classifier training (Random Forest) and map validation. Overall accuracy was 76% at 30-m spatial resolution, which is better than previous land cover mapping for the African continent. Besides, accuracies for cropland were improved dramatically by more than 10%. Our method also addressed many remaining issues for 30-m mapping (e.g. boundary effects and declines in resolution). This framework is promising for automatic and efficient global land cover mapping resulting in better visual effects and classification accuracy.  相似文献   

10.
Spectral matching algorithms can be used for the identification of unknown spectra based on a measure of similarity with one or more known spectra. Two popular spectral matching algorithms use different error metrics and constraints to determine the existence of a spectral match. Multiple endmember spectral mixture analysis (MESMA) is a linear mixing model that uses a root mean square error (RMSE) error metric. Spectral angle mapper (SAM) compares two spectra using a spectral angle error metric. This paper compares two endmember MESMA and SAM using a spectral library containing six land cover classes. RMSE and spectral angle for models within each land cover class were directly compared. The dependence of RMSE on the albedo of the modeled spectrum was also explored. RMSE and spectral angle were found to be closely related, although not equivalent, due to variations in the albedo of the modeled spectra. Error constraints applied to both models resulted in large differences in the number of spectral matches. Using MESMA, the number of spectra modeled within the error constraint increased as the albedo of the modeled spectra decreased. The value of the error constraint used was shown to make a much larger difference in the number of spectra modeled than the choice of spectral matching algorithm.  相似文献   

11.
The land surface albedo is a key parameter influencing the climate near the ground. Therefore, it must be determined with sufficient accuracy. In this paper, a statistical inversion method is presented in support of the application of kernel-based Bi-directional Reflectance Distribution Function (BRDF) models for the calculation of the surface albedo. The method provides the best linear unbiased estimations (BLUE) of the BRDF model coefficients for an arbitrary number of available angular measurements. When the number of measurements exceeds the number of the estimated coefficients, the QR decomposition method is proposed to improve the ill-conditional features of the inversion matrix. In other cases, the singular value decomposition (SVD) method is suggested. The proposed inversion method is innovative in that it provides confidence intervals for each of the BRDF model coefficients with a prescribed significance expressed by a probability level. Five candidate kernel-driven BRDF models were used in the present simulation study: Li-Sparse, Roujean, Li-Sparse-Wanner, Li-Dense and Walthall. A ground-based reflectance measurement data set including 11 surface types forms the background for the inversion experiments. The results show a strong dependence on the solar zenith angle (SZA) and on the land cover type (LCT) for all candidate models. Owing to this, none model could be recommend in a general manner. The Li-Sparse and the Li-Sparse-Wanner models performed the best for the grass and wheat LCT, while the Roujean model appeared as a favorite for the pine and deciduous forests. The implementation of the confidence interval technique shows that the BRDF model coefficients can be retrieved with an uncertainty of 20-30%, and somewhat greater in the case of forest. The measured angular reflectance curves lie, as a rule, within the uncertainty bands related to the 5% significance level (95% probability). The corresponding albedo estimates can be characterized by an absolute uncertainty of 1-2% in the visible band and 5-10% in the near infrared band, or by 10-30% in relative terms. The reflectance measurements at low SZA values are preferable for BRDF model inversion for the grassland and crop, while medium range of SZA seems to provide more information on forest features. For the majority of LCT, the results of BRDF model inversion seem to be less reliable when considering multi-angular measurements for various SZA than for a single SZA.  相似文献   

12.
Land‐cover classification with remotely sensed data in moist tropical regions is a challenge due to the complex biophysical conditions. This paper explores techniques to improve land‐cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM+) and Radarsat data. A wavelet‐merging technique was used to integrate Landsat ETM+ multispectral and panchromatic data or Radarsat data. Grey‐level co‐occurrence matrix (GLCM) textures based on Landsat ETM+ panchromatic or Radarsat data and different sizes of moving windows were examined. A maximum‐likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land‐cover classification accuracies in Amazonian environments. The incorporation of data fusion and textures increases classification accuracy by approximately 5.8–6.9% compared to Landsat ETM+ data, but data fusion of Landsat ETM+ multispectral and panchromatic data or Radarsat data cannot effectively improve land‐cover classification accuracies.  相似文献   

13.
Remote sensing is the main means of extracting land cover types,which has important significance for monitoring land use change and developing national policies.Object-based classification methods can provide higher accuracy data than pixel-based methods by using spectral,shape and texture information.In this study,we choose GF-1 satellite’s imagery and proposed a method which can automatically calculate the optimal segmentation scale.The object-based methods for classifying four typical land cover types are compared using multi-scale segmentation and three supervised machine learning algorithms.The relationship between the accuracy of classification results and the training sample proportion is analyzed and the result shows that object-based methods can achieve higher classification results in the case of small training sample ratio,overall accuracies are higher than 94%.Overall,the classification accuracy of support vector machine is higher than that of neural network and decision tree during the process of object-oriented classification.  相似文献   

14.
Remote sensing has considerable potential for providing accurate, up-to-date information in urban areas. Urban remote sensing is complicated, however, by very high spectral and spatial complexity. In this paper, Multiple Endmember Spectral Mixture Analysis (MESMA) was applied to map urban land cover using HyMap data acquired over the city of Bonn, Germany. MESMA is well suited for urban environments because it allows the number and types of endmembers to vary on a per-pixel basis, which allows controlling the large spectral variability in these environments. We employed a hierarchical approach, in which MESMA was applied to map four levels of complexity ranging from the simplest level consisting of only two classes, impervious and pervious, to 20 classes that differentiated material composition and plant species. Lower levels of complexity, mapped at the highest accuracies, were used to constrain spatially models at higher levels of complexity, reducing spectral confusion between materials. A spectral library containing 1521 endmembers was created from the HyMap data. Three endmember selection procedures, Endmember Average RMS (EAR), Minimum Average Spectral Angle (MASA) and Count Based Endmember Selection (COB), were used to identify the most representative endmembers for each level of complexity. Combined two-, three- or four-endmember models - depending on the hierarchical level - were applied, and the highest endmember fractions were used to assign a land cover class. Classification accuracies of 97.2% were achieved for the two lowest complexity levels, consisting of impervious and pervious classes, and a four class map consisting of vegetation, bare soil, water and built-up. At the next level of complexity, consisting of seven classes including trees, grass, bare soil, river, lakes/basins, road and roof/building, classification accuracies remained high at 81.7% with most classes mapped above 85% accuracy. At the highest level, consisting of 20 land cover classes, a 75.9% classification accuracy was achieved. The ability of MESMA to incorporate within-class spectral variability, combined with a hierarchical approach that uses spatial information from one level to constrain model selection at a higher level of complexity was shown to be particularly well suited for urban environments.  相似文献   

15.

Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.  相似文献   

16.
In this study we show that multiangle remote sensing is useful for increasing the accuracy of vegetation community type mapping in desert regions. Using images from the National Aeronautics and Space Administration (NASA) Multiangle Imaging Spectroradiometer (MISR), we compared roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with those played by topographic parameters in improving vegetation community type classifications for the Jornada Experimental Range and the Sevilleta National Wildlife Refuge in New Mexico, USA. The BRDF models used were the Rahman–Pinty–Verstraete (RPV) model and the RossThin‐LiSparseReciprocal (RTnLS) model. MISR nadir multispectral reflectance was considered as baseline because nadir observation is the most basic remote sensing observation. The BRDF model parameters and the topographic parameters were considered as additional data. The BRDF model parameters were obtained by inversion of the RPV model and the RTnLS model against the MISR multiangle reflectance data. The results of 32 classification experiments show that the BRDF model parameters are useful for vegetation mapping; they can be used to raise classification accuracies by providing information that is not available in the spectral‐nadir domain, or from ancillary topographic parameters. This study suggests that the Moderate Resolution Imaging Spectroradiometer (MODIS) and MISR BRDF model parameter data products have great potential to be used as additional information for vegetation mapping.  相似文献   

17.
The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere-Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.  相似文献   

18.
A method is presented for bi‐directional reflectance distribution function (BRDF) parametrization for topographic correction and surface reflectance estimation from Landsat Thematic Mapper (TM) over rugged terrain. Following this reflectance, albedo is calculated accurately. BRDF is parametrized using a land‐cover map and Landsat TM to build a BRDF factor to remove the variation of relative solar incident angle and relative sensor viewing angle per pixel. Based on the BRDF factor and radiative transfer model, solar direct radiance correction, sky diffuse radiance and adjacent terrain reflected radiance correction were introduced into the atmospheric‐topographic correction method. Solar direct radiance, sky diffuse radiance and adjacent terrain reflected radiance, as well as atmospheric transmittance and path radiance, are analysed in detail and calculated per pixel using a look‐up table (LUT) with a digital elevation model (DEM). The method is applied to Landsat TM imagery that covers a rugged area in Jiangxi province, China. Results show that atmospheric and topographic correction based on BRDF gives better surface reflectance compared with sole atmospheric correction and two other useful atmospheric‐topographic correction methods. Finally, surface albedo is calculated based on this topography‐corrected reflectance and shows a reasonable accuracy in albedo estimation.  相似文献   

19.
Detecting vegetation structure using a kernel-based BRDF model   总被引:5,自引:0,他引:5  
The magnitude of the anisotropy of vegetation is mainly determined by its spectral and structural features. It can be described by the bidirectional reflectance distribution function (BRDF). The parameters of physical BRDF models are related to the biophysical structural information. However, for a semiempirical kernel-based BRDF model, the relationship between BRDF parameters and vegetation structure is no longer as clear as with a physical BRDF model. To reveal this relationship, a structural scattering index (SSI) and a relative structural scattering index (RSSI) are derived based on the BRDF parameters in this paper. The investigation of SSI and RSSI show that they have both theoretical and practical meaning and can be used to distinguish different land cover types or to detect structural changes.  相似文献   

20.
This work is devoted to a presentation of the ECOCLIMAP-II database for Western Africa, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, implemented at global scale. ECOCLIMAP-II is a dual database at 1-km resolution that comprises an ecosystem classification and a coherent set of land surface parameters. This new physiographic information (e.g. leaf area index, fractional vegetation cover, albedo and land cover classification), was especially developed in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) programme in order to support the modelling of land-atmosphere interactions, which stresses the importance of the present study. Criteria for coherence between prevalent land cover classifications and the analysis of time series of the satellite leaf area index (LAI) between 2000 and 2007 constitute the analysis tools for setting up ECOCLIMAP-II. The LAI and inferred fraction of vegetation cover are spatially distributed per land cover unit. The fraction of vegetation cover is handled to split the land surface albedo into vegetation and bare soil albedo components, as is required for a large number of applications. The new ECOCLIMAP-II land cover product is improved with regard to the spatial coherence compared to former version. The reliability of the physiographic details is also confirmed through verification with land cover products at higher resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号