首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 343 毫秒

1.  一种基于LS-SVM的特征提取新方法及其在智能质量控制中的应用  被引次数:1
   吴德会《计算机应用》,2006年第26卷第10期
   提出一种基于最小二乘支持向量机(LS-SVM)的特征提取新方法,并将其成功应用到智能质量控制领域。首先,将线性特征提取公式表达成与LS-SVM回归算法中相同的形式;再遵循SVM方法将数据集由原输入空间映射到高维特征空间,进而使用该技巧通过线性形式实现非线性特征提取。然后,用常规控制图提取出一个含有6种模式、50维特征的仿真数据集用于测试,通过LS-SVM特征提取后,原数据集的特征被降到了3维并保留了原80%的分类信息。最后,用BP分类器对特征提取后的样本进行识别,其结果优于新型RSFM网络直接对原始样本进行识别的效果。仿真实验结果表明了LS-SVM特征提取方法的可行性和有效性。    

2.  稀疏最小二乘支持向量机  被引次数:4
   甘良志  孙宗海  孙优贤《浙江大学学报(自然科学版 )》,2007年第41卷第2期
   针对大规模数据集的回归和分类问题,改进了最小二乘支持向量机.以再生核希尔伯特空间中的线性分析为基础,把样本集映射到再生空间中,然后张成再生空间的一个线性子空间,并求出这个子空间的基.利用基线性表示子空间中的其他元素,减小了求解矩阵的维数,通过求解规模相对较小的线性方程组完成对支持向量机的训练.采用该方法对较大规模的数据样本进行了回归和分类仿真试验,并与普通的最小二乘支持向量机进行比较.结果表明,采用该方法解决复杂非线性函数的回归和分类问题,不但可以得到稀疏解,而且计算速度比普通最小二乘支持向量机提高了约20%.    

3.  化工系统海量数据的扩散映射和异常辨识  
   《计算机集成制造系统》,2014年第12期
   为充分提取化工系统中的故障特征以辨识故障类型,提出针对动态系统海量数据的故障分类方法。该方法利用扩散映射算法与扩散映射的线性增量算法,对高维空间中的化工系统运行数据进行降维,提取出数据中的低维流形特征。利用降维后的故障样本训练支持向量机多类分类器,实现系统在线数据异常辨识。通过田纳西—伊斯曼仿真数据和实际生产运行数据验证了方法的可行性和高效性。与其他类似分类方法对比,该方法具有更高的分类精度。    

4.  Fisher准则K-L变换和SVM在分类中的应用  
   李国齐  赵广社  孙照莹《计算机工程与应用》,2006年第42卷第19期
   在模式分类问题中,利用Fisher准则及K-L变换将样本数据从高维特征空间映射到低维特征空间以提取特征;而SVM(支持向量机)引进核函数隐含的映射把低维特征空间中的样本数据映射到高维特征空间来实现分类。文章利用三种方法对鸢尾属植物数据集的分类进行仿真试验,并对仿真结果进行分析比较,给出了三种方法在模式分类应用中的异同以及他们之间的内在联系和区别。    

5.  基于改进的混合学习模型的手写阿拉伯数字识别方法  被引次数:1
   徐琴珍  杨绿溪《电子与信息学报》,2010年第32卷第2期
   在特征空间维数较高的手写阿拉伯数字识别问题中,冗余的特征往往会意外增加学习模型刻画问题空间的复杂度,影响手写阿拉伯数字识别的效率和精确度。该文提出了一种基于边界对特征的敏感度值进行特征选择的支持向量机树混合学习模型,依据当前中间节点上的分类曲面对子样本空间中的样例特征的敏感程度选择特征,在新构建的子样本集上训练子节点上的支持向量机。UCI机器学习数据库中手写阿拉伯数字识别问题的仿真结果表明,与其他算法相比,该文提出的方法能够在提高或保持手写阿拉伯数字高识别精确率的同时,精简问题空间,从而简化混合学习模型的中间节点和整体结构。    

6.  非线性多维时间序列模式分类的新方法  
   程健  陈光昀  龚平华  朱小强《计算机工程与应用》,2011年第47卷第32期
   多变量非线性时间序列的模式分类是在工业过程领域广泛存在的问题,结合流形学习和支持向量分类机的特点,提出了解决该类问题的一个新方法。该方法应用核化流形学习算法K-Isomap,将高维非线性时间序列映射到低维特征空间实现维数约减,在低维特征空间中采用支持向量机设计分类器实现非线性时间序列的模式分类,该方法充分利用核化流形学习的特点,得到了较好的模型性能。应用该方法对Tennessee Eastman(TE)过程的故障分类进行了实验分析,结果表明该方法的有效性。    

7.  连续超松弛支持向量机回归算法应用研究  
   刘太安  薛欣  冯文旭  刘欣颖《计算机工程与设计》,2008年第29卷第6期
   支持向量回归问题的研究,对函数拟合(回归逼近)具有重要的理论和应用意义.借鉴分类问题的有效算法,将其推广到回归问题中来,针对用于分类问题的SOR支持向量机有效算法,提出了SORR支持向量回归算法.在若干不同维数的数据集上,对SORR算法、ASVR算法和LibSVM算法进行数值试验,并进行比较分析.数值实验结果表明,SORR算法是有效的,与当前流行的支持向量机回归算法相比,在回归精度和学习速度上都有一定的优势.    

8.  基于深度网络的多形态人脸识别  
   王莹  樊鑫  李豪杰  林妙真《计算机科学》,2015年第42卷第9期
   在实际的自动人脸识别系统中,输入的识别图像往往在表情、分辨率大小以及姿态方面呈现出多种变化。现在很多方法尝试通过线性或局部线性的映射来寻找由这些变化共享的统一的特征空间。利用由受限玻尔兹曼机(RBM)堆叠成的深度神经网络来发掘这些变化内在的非线性表达。深度网络能够学习高维数据到低维数据的映射关系,并且有助于提高图像分类和识别的性能。同时,为了实现在一个统一的深度框架下同时进行特征提取和识别,在网络的顶层增加了一个监督的回归层。在预训练阶段,通过训练集中不同姿态、不同表情以及不同分辨率的图像对网络进行初始化。在微调阶段,通过网络的输出与标签之间的差 并利用标准反向传播的方法 对模型的参数空间进行调整。在测试阶段,从测试库中随机选择一幅图像,获得统一空间下的特征向量。通过与参考图像库中的所有特征向量进行对比,利用最近邻域的方法识别人脸身份。在具有丰富表情以及大姿态变化的CMU-PIE人脸数据库上进行了全面的实验,结果表明,提出的方法取得了比最新的局域线性映射(或局部线性)的人脸识别方法更高的识别率。    

9.  基于小波支持向量机的数字通信信号调制识别  被引次数:2
   冯旭哲  罗飞路  杨俊  胡助理《电子测量与仪器学报》,2009年第23卷第3期
   通信信号自动调制识别在电子战、电子侦察中起着重要的作用。通信信号调制识别的任务是确定信号的调制类型和参数。支持向量机是一种新的通用机器学习方法,这种方法被广泛地应用在模式识别、回归估计和概率密度函数估计中。本文在详细分析了数字调制信号的特点以及小波变换提取瞬态特征原理的基础上,提出了一种利用小波变换支持向量机对数字调制信号进行识别的新方法。该方法通过小波变换将输入向量映射到一个高维特征空间,在这个特征空间内,通过构建最优分类面,即可以用支持向量机对数字调制信号进行分类。计算机仿真结果验证了该方法在不同信噪比条件下具有良好的性能。    

10.  一种入侵检测的分类方法研究  被引次数:1
   薛潇  刘以安  魏敏《计算机工程与应用》,2010年第46卷第30期
   针对传统的入侵检测算法精度低,结果稳定性差的问题,提出了一种基于构造性核函数覆盖聚类和最大化最小概率机器回归方法的入侵检测算法。首先,利用核函数覆盖将原空间的待分类样本映射到一个高维的特征空间中,使得样本变得线性可分;然后通过控制错分率实现分类的最大化,并利用最大最小概率机的高维映射泛化特性,实现了不同核函数下的数据多维分类问题。实验结果证明,该算法具有分类准确率高、稳定性好的特点。    

11.  最小二乘支持向量机算法研究  被引次数:17
   朱家元 陈开陶 张恒喜《计算机科学》,2003年第30卷第7期
   1 引言支持向量机(SVM,Support Vector Machines)是基于结构风险最小化的统计学习方法,它具有完备的统计学习理论基础和出色的学习性能,在模式识别和函数估计中得到了有效的应用(Vapnik,1995,1998)。支持向量机方法一方面通过把数据映射到高维空间,解决原始空间中数据线性不可分问题;另一方面,通过构造最优分类超平面进行数据分类。神经网络通过基于梯度迭代的方法进行数据学习,容易陷入局部最小值,支持向量机是通过解决一个二次规划问题,来获得    

12.  基于核Fisher判别分析的意识任务识别新方法  
   高湘萍  许丹  吴小培《微机发展》,2006年第16卷第9期
   提出一种新的基于核Fisher判别分析的意识任务识别新方法。该方法首先通过核函数建立一个非线性映射,把原空间的样本点投影到一个高维特征空间,然后在特征空间应用线性Fisher判别。利用不同意识任务生成的脑电数据对KFDA和FDA进行比较,最后用线性支持向量机进行分类和识别,并与非线性支持向量机进行了比较,结果表明KFDA的识别率明显优于后二者。    

13.  基于核Fisher判别分析的意识任务识别新方法  被引次数:2
   高湘萍  许丹  吴小培《计算机技术与发展》,2006年第16卷第9期
   提出一种新的基于核Fisher判别分析的意识任务识别新方法。该方法首先通过核函数建立一个非线性映射,把原空间的样本点投影到一个高维特征空间,然后在特征空间应用线性Fisher判别。利用不同意识任务生成的脑电数据对KFDA和FDA进行比较,最后用线性支持向量机进行分类和识别,并与非线性支持向量机进行了比较,结果表明KFDA的识别率明显优于后二者。    

14.  一种高效的人脸识别算法  
   孙霞  王自强《计算机工程》,2011年第37卷第22期
   提出一种基于局部Fisher鉴别分析(LFDA)和优化支持向量机(SVM)的高效人脸识别算法。在综合考虑局部几何结构和类别信息的基础上,利用LFDA将高维人脸数据映射到低维特征空间,避免维数灾难问题。在该低维特征空间中,使用经乘性更新规则训练的优化SVM对人脸数据进行分类识别。在人脸数据库上的实验结果表明,该算法的运算速度较快,识别准确率较高。    

15.  基于自编码网络特征降维的轻量级入侵检测模型  
   高妮  高岭  贺毅岳  王海《电子学报》,2017年第45卷第3期
   基于支持向量机(SVM)的入侵检测方法受时间和空间复杂度约束,在高维特征空间计算时面临“维数灾害”的问题.为此,本文提出一种基于自编码网络的支持向量机入侵检测模型(AN-SVM).首先,该模型采用多层无监督的限制玻尔兹曼机(RBM)将高维、非线性的原始数据映射至低维空间,建立高维空间和低维空间的双向映射自编码网络结构,进而运用基于反向传播网络的自编码网络权值微调算法重构低维空间数据的最优高维表示,从而获得原始数据的相应最优低维表示;最后,采用SVM分类算法对所学习到的最优低维表示进行入侵识别.实验结果表明,AN-SVM模型降低了入侵检测模型中分类的训练时间和测试时间,并且分类效果优于传统算法,是一种可行且高效的轻量级入侵检测模型.    

16.  HSC分类法及其在海量数据分类中的应用  
   任力安  何清  史忠植《电子学报》,2002年第30卷第12期
    使用支持向量机对非线性可分数据进行分类的基本思想是将样本集映射到一个高维线性空间使其线性可分.本文则基于Jordan曲线定理,提出了一种通用的基于分类超曲面的分类方法,简称HSC分类法,它是通过直接构造分类超曲面,根据样本点关于分类曲面的围绕数的奇偶性进行分类的一种新分类判断算法,与SVM方法相比,不需要考虑使用何种核函数,不需要做升维变换,直接解决非线性分类问题.对数据分类应用的结果说明:HSC可以有效地解决非线性数据的分类问题,并能够提高分类效率和准确度.    

17.  结合超像元和子空间投影支持向量机的高光谱图像分类  
   冉琼  于浩洋  高连如  李伟  张兵《中国图象图形学报》,2018年第23卷第1期
   目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响。为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法。方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类。本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类。结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Reflective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右。结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度。    

18.  流形学习算法在中文问题分类中的应用研究  
   《计算机应用与软件》,2014年第8期
   针对中文问题分类方法中特征向量维数过高导致处理速度过慢的问题,提出一种基于局部鉴别索引和支持向量聚类的中文问题分类方法。首先利用局部鉴别索引算法对原始高维问句数据集进行降维,将其映射到一个低维空间中,然后通过支持向量聚类算法对问句进行分类。在哈工大社会计算与信息检索研究中心的中文问题集上进行实验,实验结果证明了该方法的有效性,大类准确率87.6%,小类准确率72.5%,取得了较好的效果。    

19.  隐核最小二乘分类器在故障诊断中的应用  
   陈国华  蓝玉龙《计算机仿真》,2009年第26卷第9期
   作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的广泛重视并成为研究热点。为解决传统支持向量对核函数正定性的限制及求解速度不高的缺陷,通过引入最小二乘支持向量机分类算法提高学习速度,采用隐核特征映射技术实现核函数的进一步扩展,提出了一种新的隐核最小二乘分类器(HKLSC)算法。将其应用于实际工业过程的故障诊断中并根据采集的滚动轴承数据进行了仿真。结果表明,该隐核分类器具有很好的故障诊断性能,为故障诊断提供了一种新的有效途径。    

20.  核多元基因选择和极限学习机在微阵列分析中的应用  
   杨勤  董洪伟  薛燕娜《传感器与微系统》,2016年第5期
   针对微阵列数据样本量少、维度高的特点,结合当前数据降维方法中没有考虑特征与特征之间相关性的缺点,提出一种核最小二乘的特征基因选择方法.将解释变量空间通过非线性映射转换到高维空间上,再在高维空间上进行最小二乘回归,并采用极限学习机进行训练和预测.结果表明:对三种经典数据集的分类精度分别达到90.47%,88.89%,88.23%,高于传统的机器学习算法,充分表明本方法的优越性.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号