首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
针对不确定机械系统中普遍存在的摩擦力,由于其非线性和不确定性,传统基于摩擦模型的补偿控制方法难以达到满意的系统性能要求.本文提出基于自适应区间二型(Type-2)模糊逻辑系统对系统摩擦进行补偿建模,并在该摩擦补偿方法的基础上设计出鲁棒自适应控制器,保证系统输出精度,且对摩擦环境的变化具有较强自适应性.区间二型模糊逻辑系统相对于传统一型模糊逻辑系统具有较强的处理不确定性问题的能力,在本文中使用自适应区间二型模糊逻辑系统不断逼近摩擦力,根据李雅普诺夫稳定性理论求出自适应律并证明系统跟踪误差的有界性.在不同摩擦环境下的仿真结果验证了本文所提摩擦建模方法与控制策略的有效性与实用性.  相似文献   

2.
In this paper, the problem of adaptively compensating sensor uncertainties is addressed in a feedback based framework. In this study, sensor characteristics are modeled as parametrizable uncertain functions and a compensator is constructed to adaptively cancel the effects of sensor uncertainties, to generate an adaptive estimate of the plant output. Such an estimated output is used for the feedback control law. Adaptive control schemes using a model reference approach with sensor uncertainty compensation are developed for LTI plants with either known or unknown plant dynamics. A new feedback controller structure is developed for the case when the plant dynamics is unknown, to handle the plant and sensor uncertainties. Simulation results are presented to show that the proposed adaptive sensor uncertainty compensation designs significantly improve system tracking performance.  相似文献   

3.
针对永磁同步电机驱动的伺服系统在不确定性摩擦和未知负载的影响下难以达到高精度的控制效果,提出一种基于区间二型模糊系统的带有输出约束的有限时间自适应输出反馈控制方案.首先,构建一个基于非线性扰动观测器的区间二型模糊状态观测器,分别完成对于未知扰动和速度的估计,区间二型模糊系统完成对于非线性摩擦的逼近;然后,在此基础上,结合滤波误差补偿机制和有限时间技术,引入障碍Lyapunov函数和反步控制技术设计输出约束的自适应区间二型模糊输出反馈控制器;最后,根据Lyapunov稳定性理论提出严格的稳定性分析,保证闭环系统的所有信号均是有限时间内有界的,并通过数值仿真和实验验证了所提出方法的有效性.  相似文献   

4.
In this paper, adaptive friction compensation is investigated using both model-based and neural network (non-model-based) parametrization techniques. After a comprehensive list of commonly used models for friction is presented, model-based and non-modelbased adaptive friction controllers are developed with guaranteed closed-loop stability. Intensive computer simulations are carried out to show the effectiveness of the proposed control techniques, and to illustrate the effects of certain system parameters on the performance of the closed-loop system. It is observed that as the friction models become complex and capture the dominate dynamic behaviours, higher feedback gains for model-based control can be used and the speed of adaptation can also be increased for better control performance. It is also found that neural networks are suitable candidate for friction modelling and adaptive controller design for friction compensation.  相似文献   

5.
This paper presents a simple and effective nonlinear friction compensation method which is derived from an adaptive control strategy and its practical application to a linear actuator. The proposed adaptive friction compensation method is shown to be equivalent to the reversed integral controller that is easily applied to the conventional PID controller. The reversed integral controller reverses the sign of the integrator output as the sign of the velocity changes. It analyzes how the reversed control action can compensate for friction. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Spherical joints) in-parallel 6-DOF manipulator.  相似文献   

6.
An exponentially stable adaptive friction compensator   总被引:1,自引:0,他引:1  
This note presents a novel adaptive compensation scheme for Coulomb friction in a servocontrol system. An adaptive observer for estimating the unknown Coulomb friction coefficient is also derived on the basis of the Lyapunov technique. In addition, a linearizing control law is developed to compensate for the friction force and obtain the tracking objective. The proposed adaptive compensation guarantees an exponential convergence for state errors and parameter error, and known adaptive schemes guarantee only an asymptotic (or stable) convergence. Simulation results demonstrate the effectiveness of the proposed method for a single-mass servocontrol system  相似文献   

7.
针对一类多变量非线性耦合系统,提出了一种基于虚拟模型的非线性自适应控制器.首先将非线性系统线性化处理并将其作为虚拟模型,对该模型设计线性自适应控制律.然后将线性控制律分别应用在虚拟系统和受控的实际非线性系统上,根据两者的输出误差设计补偿控制律,以达到对实际被控对象进行自适应解耦抗扰的目的.利用李雅普诺夫稳定理论给出了控制系统稳定性条件.实验仿真验证了控制算法的有效性.  相似文献   

8.
伺服系统的神经网络摩擦力自适应补偿研究   总被引:1,自引:0,他引:1  
张媚  李秀娟 《计算机仿真》2003,20(12):70-73
在高精度伺服系统中,摩擦力是影响其低速性能的关键因素。该文分析了摩擦力的特性、数学模型、及其对伺服系统性能的影响,提出了基于RBF网络的自适应摩擦力补偿方法,并将其与参数线性化模型相比较。在某单轴速率/位置转台的控制系统中的应用结果表明,该方法能有效地改善伺服系统的性能。  相似文献   

9.

Continuous friction compensation along with other modeling uncertainties is concerned in this paper, to result in a continuous control input, which is more suitable for controller implementation. To accomplish this control task, a novel continuously differentiable nonlinear friction model is synthesized by modifying the traditional piecewise continuous LuGre model, then a desired compensation version of the adaptive robust controller is proposed for precise tracking control of electrical-optical gyro-stabilized platform systems. As a result, the adaptive compensation and the regressor in the proposed controller will depend on the desired trajectory and on-line parameter estimates only. Hence, the effect of measurement noise can be reduced and then high control performance can be expected. Furthermore, the proposed controller theoretically guarantees an asymptotic output tracking performance even in the presence of modeling uncertainties. Extensively comparative experimental results are obtained to verify the effectiveness of the proposed control strategy.

  相似文献   

10.
In this paper, we present an output feedback backstepping controller for mechatronic actuators with dynamic adaptive parameters for friction and load compensation. The targeted application is angular position control of automotive mechatronic valves, which possess nonlinear dynamics due to friction. The proposed controller requires only position measurement. The velocity, current, and friction dynamics are obtained by estimation and observation. The adaptive control law compensates the variations in friction behavior and load torque variation, which are common in real life applications. Lyapunov analysis has been used to show the asymptotic convergence of the closed‐loop system to zero. Simulation and laboratory experimental results illustrate the effectiveness and robustness of the controller. Further experiments on an engine test bench demonstrate the applicability of this controller in commercial engines, as well as its effectiveness as compared with conventional PI controllers.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the control of a linear drive system with friction and disturbance compensation. A stable adaptive controller integrated with fuzzy model-based friction estimation and switching-based disturbance compensation is proposed via Lyapunov stability theory. A TSK fuzzy model with local linear friction models is suggested for real-time estimation of its consequent local parameters. The parameters update law is derived based on linear parameterization. In order to compensate for the effects resulting from estimation error and disturbance, a robust switching law is incorporated in the overall stable adaptive control system. Extensive computer simulation results show that the proposed stable adaptive fuzzy control system has very good performances, and is potential for precision positioning and trajectory tracking control of linear drive systems.  相似文献   

12.
In this paper, a new approach employing both adaptive and robust methodologies is proposed for stick–slip friction compensation for tracking control of a one degree-of-freedom DC-motor system. It is well known that the major components of friction are Coulomb force, viscous force, exponential force (used to model the downward bend of friction at low velocity) and position-dependent force. Viscous force is linear and Coulomb force is linear in parameter; thus, these two forces can be compensated for by adaptive feedforward cancellation. Meanwhile, the latter two forces, which are neither linear nor linear in parameters, can only be partially compensated for by adaptive feedforward cancellation. Therefore, a robust compensator with an embedded adaptive law to ‘learn’ the upper bounding function on-line is proposed to compensate the uncancelled exponential and position-dependent friction. Lyapunov's direct method is utilized to prove the globally asymptotic stability of the servo-system under the proposed friction compensation method. Numerical simulations are presented as illustrations. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.  相似文献   

14.
Lu Lu  Bin Yao  Qingfeng Wang  Zheng Chen 《Automatica》2009,45(12):2890-2896
LuGre model has been widely used in dynamic friction modeling and compensation. However, there are some practical difficulties when applying it to systems experiencing large range of motion speeds such as, the linear motor drive system studied in the article. This article first details the digital implementation problems of the LuGre model based dynamic friction compensation. A modified model is then presented to overcome those shortcomings. The proposed model is equivalent to LuGre model at low speed, and the static friction model at high speed, with a continuous transition between them. A discontinuous projection based adaptive robust controller (ARC) is then constructed, which explicitly incorporates the proposed modified dynamic friction model for a better friction compensation. Nonlinear observers are built to estimate the unmeasurable internal state of the dynamic friction model. On-line parameter adaptation is utilized to reduce the effect of various parametric uncertainties, while certain robust control laws are synthesized to effectively handle various modeling uncertainties for a guaranteed robust performance. The proposed controller is also implemented on a linear motor driven industrial gantry system, along with controllers with the traditional static friction compensation and LuGre model compensation. Extensive comparative experimental results have been obtained, revealing the instability when using the traditional LuGre model for dynamic friction compensation at high speed experiments and the improved tracking accuracy when using the proposed modified dynamic friction model. The results validate the effectiveness of the proposed approach in practical applications.  相似文献   

15.
An extended Kalman–Bucy filter (EKBF)-based friction compensation method is presented and validated. The method relies on an accurate model of system rigid-body dynamics and measured motion, rather than a structured nonlinear friction model, to estimate external friction torque. The estimate is used in a traditional friction compensator to cancel friction effects. The EKBF compensator is compared with other model-based and non-model-based friction compensation strategies through position tracking experiments. Results show that when motion is dominated by static and Stribeck friction, non-model-based friction estimation and compensation using the EKBF consistently provides equal or superior performance over model-based adaptive friction compensation methods.  相似文献   

16.
本文考虑具有量化输入和输出约束的一类非线性互联系统的自适应分散跟踪控制设计. 分别针对量化参数已知和未知两种情况, 基于反推(Backstepping)设计法, 利用神经网络逼近特性, 设计自适应分散跟踪控制策略. 通过定义新的未知常量和非线性光滑函数, 设计自适应参数估计项来消除未知互联项对系统的影响. 进一步考虑量化参数未知的情形, 引入一个新的不等式来转化输入信号, 并构建新的自适应补偿项来处理量化影响. 同时, 障碍李雅普诺夫函数的引入, 确保了系统输出不违反约束条件. 与现有量化输入设计相比, 本文所提方法不要求未知非线性项满足李普希兹条件, 并且允许量化参数未知. 该设计方法保证了闭环系统所有信号最终一致有界, 而且跟踪误差能够收敛到原点的小邻域内, 同时保证输出不违反约束条件. 最后, 仿真算例验证了所提方法具备良好的跟踪控制性能.  相似文献   

17.
文利燕  陶钢  姜斌  杨杰 《自动化学报》2022,48(1):207-222
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统,设计了一种基于多模型切换的自适应执行器故障补偿控制策略,以提高系统应对动态突变的能力,同时实现不确定执行器故障的快速精确补偿.针对执行器故障模式的不确定性问题,采用基于多模型的参数估计方法,设计了自适应控制器组;基于最优性能指标函数,提出了一种控制切换机制,...  相似文献   

18.
An adaptive inverse controller is developed for feedback linearizable nonlinear systems with nonsmooth actuator nonlinearities. The use of an actuator nonlinearity inverse and a feedback linearizing controller leads to an error equation suitable for deriving an adaptive update law for the inverse parameters. Closed-loop signal boundedness is proved analytically, and system performance improvement is shown by simulation results. Such adaptive control schemes are also developed for multivariable nonlinear systems with actuator nonlinearities. For nonlinear systems that do not possess a relative degree, dynamic extension is employed to realize adaptive inverse compensation designs for actuator nonlinearities. These adaptive designs ensure closed-loop stability in the presence of uncertain actuator nonlinearities  相似文献   

19.
Because friction is a phenomenon that is present in the vast majority of mechanical systems producing some unwanted effects such as tracking errors, limit cycles, and stick‐slip motion, friction model based compensation has been previously proposed. We present a simple adaptive friction compensator, developed from a simple friction model, that achieves the control objective (friction compensation). This simple model was effectively used to obtain a friction compensator with smooth terms avoiding the use of signum and absolute functions presented in previously reported works on friction compensation. Considering that the velocity is bound away from zero and using Lyapunov stability analysis, exponential stability of the closed loop system is shown; i.e., the tracking errors and the parameter estimation error converge exponentially to zero. Because our friction compensator is based on a simple friction model, numerical experiments using a more representative friction model are given to support our theoretical findings.  相似文献   

20.
介绍一种降低低速转台伺服系统在转动过程中由于摩擦因数影响转动精度的方法。在低速转台转动的过程中由于摩擦力等的影响,转台的速度、位置都会发生偏差,所以在转台系统上引入摩擦控制补偿。利用公式推理,通过与理论值对比,发现自适应摩擦补偿方式与传统摩擦补偿方式相比,其跟踪误差大大降低,能有效抑制摩擦干扰对伺服系统的不利影响。进行基于MATLAB环境下的仿真效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号