首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
殷新春  陈崚  谢立 《软件学报》2002,13(7):1193-1198
给出了将具有变相关的嵌套循环映射到具有分布式存储的多处理机上的两种方法.通过相关向量的分解或由相关向量导入方向向量,可将具有变相关的嵌套循环分解成若干互相没有相关关系的独立部分.由于它们可以被独立地执行,从而可以被映射到各个处理机上并行处理.  相似文献   

2.
A solution to the problem of partitioning data for distributed memory machines is discussed. The solution uses a matrix notation to describe array accesses in fully parallel loops, which allows the derivation of sufficient conditions for communication-free partitioning (decomposition) of arrays. A series of examples that illustrate the effectiveness of the technique for linear references, the use of loop transformations in deriving the necessary data decompositions, and a formulation that aids in deriving heuristics for minimizing a communication when communication-free partitions are not feasible are presented  相似文献   

3.
This paper addresses the problem of communication-free partition of iteration spaces and data spaces along hyperplanes. To finding more possible communication-free hyperplane partitions, we treat statements within a loop body as separate schedulable units. Instead of using the information about data dependence distance or direction vectors, our technique explicitly formulates array references as transformations from statement-iteration spaces to data spaces. Based on these transformations, the necessary and sufficient conditions for communication-free partition along hyperplanes to be feasible have been proposed. This approach can be applied to all programs with an imperfectly nested loop or sequences of imperfectly nested loops, whose array references are affine functions of outer loop indices or loop invariant variables. The proposed approach is more practical than existing methods in finding the data and computation distribution patterns that can cause the processor to execute fully-parallel on multicomputers without any interprocessor communication.  相似文献   

4.
In distributed memory multicomputers, local memory accesses are much faster than those involving interprocessor communication. For the sake of reducing or even eliminating the interprocessor communication, the array elements in programs must be carefully distributed to local memory of processors for parallel execution. We devote our efforts to the techniques of allocating array elements of nested loops onto multicomputers in a communication-free fashion for parallelizing compilers. We first analyze the pattern of references among all arrays referenced by a nested loop, and then partition the iteration space into blocks without interblock communication. The arrays can be partitioned under the communication-free criteria with nonduplicate or duplicate data. Finally, a heuristic method for mapping the partitioned array elements and iterations onto the fixed-size multicomputers under the consideration of load balancing is proposed. Based on these methods, the nested loops can execute without any communication overhead on the distributed memory multicomputers. Moreover, the performance of the strategies with nonduplicate and duplicate data for matrix multiplication is studied  相似文献   

5.
分布存储系统中优化通信的冗余计算分割   总被引:1,自引:0,他引:1  
针对并行循环套序列,提出一种冗余计算分割的通信优化方法,根据数据流分析,文中给出用以确定每个循环套的冗余计算量的一般方法,并在此基础上提出冗余计算分割的实现和判定,针对规则依赖的程序,该文还提出了一个高效的冗余计算分割的实现方法,该技术已经在一个并行编译器中实现,试验结果表明,它比传统的通信优化技术有明显的优越性。  相似文献   

6.
Due to a significant communication overhead of sending and receiving data, the loop partitioning approaches on distributed memory systems must guarantee not just the computation load balance but computation+communication load balance. The previous approaches in loop partitioning have achieved a communication-free, computation load balanced iteration space partitioning solution for a limited subset of DOALL loops. But a large category of DOALL loops inevitably result in communication and the trade-offs between computation and communication must be carefully analyzed for these loops in order to balance out the combined computation time and communication overheads. In this work, we describe a partitioning approach based on the above motivation for the general cases of DOALL loops. Our goal is to achieve a computation+communication load balanced partitioning through static data and iteration space distribution. Our approach first performs partitioning of iteration and data spaces of a loop nest by analyzing communication and parallelism; it then performs architecture-dependent analysis to adjust the granularity of partitions, load balance each partition with respect to total computation+communication, and then performs mapping of partitions onto the available number of processors. This multiphase partitioning method works as follows. First, the code partitioning phase analyzes the references in the body of the DOALL loop nest and determines a set of directions for reducing a larger degree of communication by trading a lesser degree of parallelism. The partitioning is carried out in the iteration space of the loop by cyclically following a set of direction vectors such that the data references are maximally localized and reused, eliminating a larger communication volume than parallelism. We then perform data space partitioning based on a new larger partition owns rule to minimize the communication overhead for a compute intensive partition by localizing its references relatively more than a smaller noncompute intensive partition. A partition interaction graph is then constructed which is used by the architecture-dependent analysis phase to merge the partitions to achieve granularity adjustment, computation+communication load balance, and mapping on the actual number of available processors. Relevant theory and algorithms are developed along with a performance evaluation on the Cray T3D.  相似文献   

7.
Presents a theoretical framework for automatically partitioning parallel loops to minimize cache coherency traffic on shared-memory multiprocessors. While several previous papers have looked at hyperplane partitioning of iteration spaces to reduce communication traffic, the problem of deriving the optimal tiling parameters for minimal communication in loops with general affine index expressions has remained open. Our paper solves this open problem by presenting a method for deriving an optimal hyperparallelepiped tiling of iteration spaces for minimal communication in multiprocessors with caches. We show that the same theoretical framework can also be used to determine optimal tiling parameters for both data and loop partitioning in distributed memory multicomputers. Our framework uses matrices to represent iteration and data space mappings and the notion of uniformly intersecting references to capture temporal locality in array references. We introduce the notion of data footprints to estimate the communication traffic between processors and use linear algebraic methods and lattice theory to compute precisely the size of data footprints. We have implemented this framework in a compiler for Alewife, a distributed shared-memory multiprocessor  相似文献   

8.
9.
Partitioning and mapping of nested loops for linear array multicomputers   总被引:1,自引:1,他引:0  
In distributed-memory multicomputers, minimizing interprocessor communication is the key to the efficient execution of parallel programs. In order to reduce the amount of communication overhead, parallel programs on multicomputers must be carefully scheduled by parallelizing compilers. This paper proposes some compilation techniques for partitioning and mapping nested loops with constant data dependences onto linear array multicomputers. First, a systematic partition strategy is proposed to project ann-dimensional computational structure, representing ann-nested loop, onto a line to form a one-dimensional projected structure with low communication overhead. Then, a mapping algorithm is proposed for mapping the partitioned loops onto linear arrays in a way that balances the workload and minimizes the communication cost among processors. Finally, parallel execution codes can be automatically generated for such linear array multicomputers.  相似文献   

10.
In this paper we address the problem of partitioning nested loops with non-uniform (irregular) dependence vectors. Parallelizing and partitioning of nested loops requires efficient inter-iteration dependence analysis. Although many methods exist for nested loop partitioning, most of these perform poorly when parallelizing nested loops with irregular dependences. Unlike the case of nested loops with uniform dependences these will have a complicated dependence pattern which forms a non-uniform dependence vector set. We apply the results of classical convex theory and principles of linear programming to iteration spaces and show the correspondence between minimum dependence distance computation and iteration space tiling. Cross-iteration dependences are analyzed by forming an Integer Dependence Convex Hull (IDCH). Every integer point in this IDCH corresponds to a dependence vector in the iteration space of the nested loops. A simple way to compute minimum dependence distances from the dependence distance vectors of the extreme points of the IDCH is presented. Using these minimum dependence distances the iteration space can be tiled. Iterations within a tile can be executed in parallel and the different tiles can then be executed with proper synchronization. We demonstrate that our technique gives much better speedup and extracts more parallelism than the existing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号