首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with microfluidic studies for lab-on-a-chip development. The first goal was to develop microsystems immediately usable by biologists for complex protocol integrations. All fluid operations are performed on nano-liter droplet independently handled solely by electrowetting on dielectric (EWOD) actuation. A bottom-up architecture was used for chip design due to the development and validation of elementary fluidic designs, which are then assembled. This approach speeds up development and industrialization while minimizing the effort in designing and simplifying chip-fluidic programming. Dispensing reproducibility for 64 nl droplets obtained a CV below 3% and mixing time was only a few seconds. Ease of the integration was demonstrated by performing on chip serial dilutions of 2.8-folds, four times. The second part of this paper concerns the development of new innovative fluidic functions in order to extend EWOD-actuated digital fluidics’ capabilities. Experiments of particle dispensing by EWOD droplet handling are reported. Finally, work is shown concerning the coupling of EWOD actuation and magnetic fields for magnetic bead manipulation.  相似文献   

2.
In this work, for the first time, we demonstrate nanoscale droplet generation from a continuous electrowetting microchannel using a simple and precise image-based droplet volume metering technique. One of the most popular ways of droplet generation in electrowetting devices is to split a droplet from a preloaded volume as a fluid reservoir. This method is effective, but lowers volume consistency after multiple droplets are generated. Impedance- and capacitance-based methods of volume metering have been successfully used in digital microfluidics, but require complex circuitry and feedback signal processing. In this work, we demonstrate nanoliter droplet generation from a continuous electrowetting channel used as a replenishable fluid reservoir which compensates for the loss of reservoir volume as droplets are sequentially split. This improves volume consistency especially for applications requiring multi-droplet generation. Based on the area of the electrode, the volume of each droplet split from the electrowetting channel can be obtained by a simple and precise image processing technique with no need for additional hardware and measurement errors of ±0.05 %. This simple technique can be used in a wide range of applications that require precise volume metering, such as immunoassay.  相似文献   

3.
The possibility of controlled droplet motion (droplet addressing) mediated by DC electric field in aqueous two-phase systems (ATPS) is here reported for the first time. Three ATPS of polyethylene glycol (PEG)/salt type, namely PEG/phosphate, PEG/sulphate, and PEG/carbonate, were selected for this study. We observed fast motion of salty droplets dispersed in PEG continuous phase induced by electric field of relative low strength. Hence, three fluidic systems with separated electrode chambers for the evaluation of electrophoretic mobilities and for addressing experiments were fabricated. Electrophoretic mobilities of salty droplets always exceeded the value of \(1\times 10^{-7}\, \hbox {m}^2\hbox {V}^{-1}\hbox {s}^{-1}\), which is about by one magnitude higher value than those typically measured in water–oil droplet systems. The electrophoretic mobilities in systems with free surface are the same or even smaller than in closed microfluidic structures, which is accounted mainly to the fact that a significant part of salty droplets is exposed to air and does not contribute to droplet forcing. Series of addressing and merging experiments in a microfluidic chip shows that DC electric field can be used as a powerful tool for smart manipulation of droplets in microfluidic systems with PEG/salt ATPS.  相似文献   

4.
An electrowetting on dielectric (EWOD)-based micropump was used as a platform to study the contribution of the pinning and wetting-line velocity effects on its flow rate. In this micropump, a droplet is driven into a microchannel using EWOD to manipulate a meniscus in the channel. An interesting observation was that the shrinking input droplet changes its shape in two modes: (1) in the first mode, droplet contact angle decreases while its wetting area remains constant (pinning) and (2) in the second mode, droplet wetting line recedes while its contact angle changes as a function of its velocity (dynamic contact angle). Unexpectedly, the micropump flow rate was found to be constant in spite of the changes in the droplet radius. The pump performance was studied to unravel the physical concept behind its constant flow rate. A detailed characterization of variation in contact angle due to pinning, wetting-line velocity, and EWOD was carried out. Dynamic contact angles were used to accurately calculate the pressure gradient between the droplet and the meniscus for flow rate estimation. It was shown that neglecting either the wetting-line energy or the velocity effect results in not only a considerable gap between the predicted and the measured flow rates but also an unphysical instability in flow rate analysis. However, when these effects were fully taken into account, an excellent agreement between the predicted and the measured flow rates was obtained.  相似文献   

5.
We have demonstrated a 2D droplet manipulation platform allowing fully optical manipulation of droplets on a photosensitive surface. Optically controlled injection, transport, separation, and multiple droplet manipulation have been achieved for nanoliter-size droplets. These functions are realized by sandwiching the droplets between two optoelectrowetting (OEW) surfaces. Optical illumination on OEW surfaces changes the surface wettability locally through the electrowetting mechanism. Optical illumination turns the initially Teflon-coated surface from hydrophobic to hydrophilic. This process is reversible and can be controlled in real time. We have achieved a maximum transport speed of 78 mm/s for a 100-nL droplet using a scanning laser beam. We have also demonstrated a fully decoupled 2D multidroplet manipulation on the OEW surfaces. Potentially, the OEW mechanism can be scaled up to process a large number of liquid droplets using projected optical images for high throughput applications.  相似文献   

6.
Electrowetting-on-dielectric (EWOD) is now used in numerous microsystems like digital lab-on-chips. This paper deals with a characteristic hydrodynamic flow appearing in droplets actuated by EWOD with AC voltage. In the coplanar electrode configuration, two pairs of vortex flows are observed to form in a droplet centred on the electrode gap. All experiments are performed in oil as ambient phase and flows in the droplet are analysed using fluorescent beads. At the same time, droplet oscillations induced by AC EWOD are also revealed under stroboscopic lighting. These experiments show that vortex location can be controlled by frequency actuation with fair degree of reproducibility.  相似文献   

7.
Water droplet dispensing in microfluidic parallel-plate electrowetting-on-dielectric (EWOD) devices with various reservoir designs has been numerically studied. The Navier–Stokes equations are solved using a finite-volume formulation with a two-step projection method on a fixed grid. The free surface of the liquid is tracked by a coupled level set and volume-of-fluid method with the surface tension force determined by the continuum surface force model. Contact angle hysteresis which is an indispensible element in EWOD modeling has been implemented. A simplified model is adopted for the viscous stresses exerted by the parallel plates at the solid–liquid interface. Good agreement has been achieved between the numerical results and the corresponding experimental data. The dispensing mechanism has been carefully examined, and droplet volume inconsistency for each design has been investigated. It has been discovered that the pressure distribution on the cutting electrode at the beginning of the cutting stage is of considerable significance for the inconsistency of droplet volumes. Several key elements which directly affect the pressure distribution and volume inconsistency have been identified.  相似文献   

8.
Electrowetting on dielectric (EWOD) is useful in manipulating droplets for digital (droplet-based) microfluidics, but its high driving voltage over several tens of volts has been a barrier to overcome. This article presents the characteristics of EWOD device with aluminum oxide (Al2O3, ε r  ≈ 10) deposited by atomic layer deposition (ALD), for the first time as the high-k dielectric for lowering the EWOD driving voltage substantially. The EWOD device of the single-plate configuration was fabricated by several steps for the control electrode array of 1 mm × 1 mm squares with 50 μm space, the dielectric layer of 1,270 Å thick ALD Al2O3, the reference electrode of 20 μm wide line electrode, and the hydrophobic surface treatment by Teflon-AF coating, respectively. We observed the movement of a 2 μl water droplet in an air environment, applying a voltage between one of the control electrodes and the reference electrode in contact with the droplet. The droplet velocity exponentially depending on the applied voltage below 15 V was obtained. The measured threshold voltage to move the droplet was as low as 3 V which is the lowest voltage reported so far in the EWOD researches. This result opens a possibility of manipulating droplets, without any surfactant or oil treatment, at only a few volts by EWOD using ALD Al2O3 as the dielectric.  相似文献   

9.
This paper examines the electrostatic force on a microdroplet transported via electrowetting on dielectric (EWOD). In contrast with previous publications, this article details the force distribution on the advancing and receding fluid faces, in addition to presenting simple algebraic formulae for the net force in terms of system parameters. Dependence of the force distribution and its integral on system geometry, droplet location, and material properties is described. The consequences of these theoretically and numerically obtained results for design and fabrication of EWOD devices are considered.  相似文献   

10.
Droplet-based microfluidic allows high throughput experimentation in with low volume droplets. Essential fluidic process steps are on the one hand the proper control of the droplet composition and on the other hand the droplet processing, manipulation and storage. Beside integrated fluidic chips, standard PTFE-tubings and fluid connectors can be used in combination with appropriate pumps to realize almost all necessary fluidic processes. The segmented flow technique usually operates with droplets of about 100–500 nL volume. These droplets are embedded in an immiscible fluid and confined by channel walls. For the integration of segmented flow applications in established research workflows—which are usually base on microtiter plates—robotic interface tools for parallel/serial and serial/parallel transfer operations are necessary. Especially dose–response experiments are well suited for the segmented flow technique. We developed different transfer tools including an automated “gradient take-up tool” for the generation of segment sequences with gradually changing composition of the individual droplets. The general working principles are introduced and the fluidic characterizations are given. As exemplary application for a dose–response experiment the inhibitory effect of antibiotic tetracycline on Escherichia coli bacteria cultivated inside nanoliter droplets was investigated.  相似文献   

11.
Droplet sorting by size was achieved in microfluidic channels through controlling the bifurcating junction geometry and the flow rates of the daughter channels. The sorting designs separated droplets with a radius difference of as little as 4 μm. The developed droplet channel design can be potentially used in combination with other particle sorting system to improve the sorting efficiency without the control of electrodes or fluidic valves.  相似文献   

12.
We use a three-dimensional multiphase lattice-Boltzmann model to study basic operations such as transport, merging and splitting of nanoliter water droplets actuated by electrowetting in digital microfluidic devices. In a first step, numerical and analytical predictions for the droplet transport velocity are compared and very good agreement is obtained for a wide range of contact angles. The same algorithm is employed then to study the dynamics of the splitting processes at different contact angles and different geometries of the cell. The configuration of the liquid droplet involved in a splitting process and the dependence of the splitting time on the transport velocity are also investigated and phenomenological laws describing these processes are also proposed.  相似文献   

13.
We report contact dynamics of nanodroplets in carbon nanotubes using molecular dynamics simulations. The effects of electric field, nanotube radius, and salt ions included in the nanodroplets are explored in more detail. For the cases without applied electric field, the droplet fills the cross section of carbon nanotubes with small radius completely. When the tube radius becomes larger, the droplet retracts towards the surface of the nanotube to minimize the surface tension of the droplet and shows wider extension along the axial direction. When an electric field perpendicular to the axial direction of the carbon nanotubes is applied, the position and shape of the droplets are changed which is also related to the tube radius and whether the droplet contains salt ions. Unlike a planar surface, the nanotube limits spreading of the droplets along the radial direction. The variation of the center of mass of the droplets indicates a significant confinement to the position of the droplets in the electric field. For the salty water droplets, a strong electric field induces ejection of small water clusters from the droplet in a nanotube with large radius. As a consequence, the droplet and water clusters are separated and moved to two opposite sides of the nanotube by the electric field.  相似文献   

14.
This paper describes the first microelectromechanical systems (MEMS) demonstration device that adopts surface tension as the driving force. A liquid-metal droplet can be driven in an electrolyte-filled capillary by locally modifying the surface tension with electric potential. We explore this so-called continuous electrowetting phenomenon for MEMS and present crucial design and fabrication technology that reduce the surface-tension-driving principle, inherently powerful in microscale, into practice. The key issues that are identified and investigated include the problem of material compatibility, electrode polarization, and electrolysis, as well as the micromachining process. Based on the results from the initial test devices and the design concept for a long-range movement of the liquid-metal droplet, we demonstrate a liquid micromotor, an electrolyte and liquid-metal droplets rotating along a microchannel loop. Smooth and wear-free rotation of the liquid system is shown at a speed of ~40 mm/s (or 420 r/min along a 2-mm loop) with a driving voltage of only 2.8 V and little power consumption (10-100 μW)  相似文献   

15.
Second generation microfluidic biochip is known as digital microfluidic biochip (DMFB). DMFB performs different clinical pathological experimentation, DNA sequencing, air contamination detection and many other bio-chemical experiments based on appropriate bio-assay protocols. DMFB comprises two dimensional array of electrodes fabricated over two parallel glass plates, which is capable of performing miniaturized (nano/ pico liter volume) droplet dispensing, transportation and mixing through electro-wetting of dielectrics (EWOD). Droplet operations through EWOD are mostly managed by droplet scheduling algorithms which are NP hard in nature. At present reliability is a major concern for commercialization of operational DMFB. Reliable output of DMFB is mostly affected by different faults within electrodes. This further suffers from cross-contamination issues among different droplets due to repeated use of DMFB boards for different assay operations. Present work proposes a novel test droplet routing method based on adaptive weighted particle swarm optimization (PSO) model. This test droplet circulation method aims to identify defective electrodes and simultaneously performs residue removal. Experimental findings of the proposed model on some standard test benches and real life bio-assay samples reveal operational supremacy in terms of overall computational time and operational accuracy over some existing best known models.  相似文献   

16.
The present study deals with the effect of surfactants on the cross-stream migration of droplets in a confined fluidic environment, both experimentally and theoretically. Presence of an imposed flow induces droplet deformation and disturbs the equilibrium that results in subsequent surfactant redistribution along the interface. This further creates a gradient in surface tension, thus generating a Marangoni stress that significantly alters the droplet dynamics. On subsequent experimental investigation, it is found that presence of surfactants reduces the cross-stream migration velocity of the droplet. High-speed photography is utilized to visualize the transport of droplets in a microfluidic channel. It is shown that the channel confinement significantly enhances the surfactant-induced retardation of the droplet. In addition, a larger surfactant concentration is found to induce a greater reduction in cross-stream migration velocity of the droplet, the effect of which is reduced when the initial transverse position of the droplet is shifted closer to the channel centerline. To support our experimental results, an asymptotic approach is adopted to solve the flow field in the presence of bulk-insoluble surfactants and under the assumption of small shape deformation. A good match between our theoretical prediction and the experimental results is obtained. The present analysis provides us with a wide scope of application towards various droplet-based microfluidic as well as medical diagnostic devices where manipulation of droplet trajectory is a major issue.  相似文献   

17.
EWOD microfluidic systems for biomedical applications   总被引:1,自引:0,他引:1  
As the technology advances, a growing number of biomedical microelectromechanical systems (bio-MEMS) research involves development of lab-on-a-chip devices and micrototal analysis systems. For example, a portable instrument capable of biomedical analyses (e.g., blood sample analysis) and immediate recording, whether the patients are in the hospital or home, would be a considerable benefit to human health with an excellent commercial viability. Digital microfluidic (DMF) system based on the electrowetting-on-dielectric (EWOD) mechanism is an especially promising candidate for such point-of-care systems. The EWOD-based DMF system processes droplets in a thin space or on an open surface, unlike the usual microfluidic systems that process liquids by pumping them in microchannels. Droplets can be generated and manipulated on EWOD chip only with electric signals without the use of pumps or valves, simplifying the chip fabrication and the system construction. Microfluidic operations by EWOD actuation feature precise droplet actuation, less contamination risk, reduced reagents volume, better reagents mixing efficiency, shorter reaction time, and flexibility for integration with other elements. In addition, the simplicity and portability make the EWOD-based DMF system widely popular in biomedical or chemical fields as a powerful sample preparation platform. Many chemical and biomedical researches, such as DNA assays, proteomics, cell assays, and immunoassays, have been reported using the technology. In this paper, we have reviewed the recent developments and studies of EWOD-based DMF systems for biomedical applications published mostly during the last 5 years.  相似文献   

18.
We explore a novel transverse line electrode configuration for droplet transport through dielectrophoretic actuation with potential lab-on-chip applications. Using a lumped electromechanical model, we show a weak dependence of DEP actuation force on electrode spacing in this configuration. The configuration successfully triggers translational drop motion with minimal changes in contact angle at considerably low voltages. Two sessile, deionized water drops placed horizontally apart on a indium-tin–oxide-coated glass with additional coatings of polydimethylsiloxane, and a thin layer of Teflon is merged by applying an AC field (88 Vrms at 150 kHz) through a common horizontal wire electrode. A lateral motion of two drops is induced along the horizontal electrode, eventually leading to coalescence. The drop motion is unique compared to electrowetting in its near-constant dynamic contact angle, and irreversibility on withdrawal of electric field. The effect of frequency on the drop behavior is examined through a parametric study on single drops within the range of 2–200 kHz. It is interesting to observe a switch-over from DEP behavior at high frequency to EWOD behavior at low frequency around a critical frequency (Jones in Langmuir 18:4437–4443, 2002).  相似文献   

19.
This article reports a design that reliably adds reagents into droplets by exploiting the physics of fluid flow at a T-junction in the microchannel. An expanded section right after the T-junction enhances merging of a stream with a droplet, eliminates the drawbacks such as extra droplet formation and long mixing time. The expanded section reduces the pressure buildup at the T-junction and minimizes the tendency to form extra droplets; plays the role in creating low Laplace pressure jump across the interface of the droplet forming from the T-junction which reduces the probability of forming extra droplet in the merging process; provides space for droplet coalescence if there is an extra droplet due to droplet break-up before merging. In this design, after merging, the reactants are in axial arrangement inside the droplets which lead to faster mixing. Reliable addition of reagent to the droplets happens for the combination of flow rates in a broad range from 25 to 250 μl/h, for both DI water (Q DI) and fluorescent (Q fluo) streams.  相似文献   

20.
Digital (i.e., droplet-based) microfluidics, by the electrowetting-on-dielectric (EWOD) mechanism, has shown great potential for a wide range of applications, such as lab-on-a-chip. While most reported EWOD chips use a series of electrode pads essentially in 1D line pattern designed for specific tasks, the desired universal chips allowing user-reconfigurable paths would require the electrode pads in 2D pattern. However, to electrically access the electrode pads independently, conductive lines need to be fabricated underneath the pads in multiple layers, raising a cost issue particularly for disposable chip applications. In this paper, we report the building of digital microfluidic plates based on a printed circuit board (PCB), in which multilayer electrical access lines were created inexpensively using the mature PCB technology. However, due to its surface topography and roughness and resulting high resistance against droplet movement, the as-fabricated PCB surfaces require high (~500 V) voltages unless coated with or immersed in oil. Our goal is the EWOD operations of droplets not only on oil-covered surfaces but also on dry ones. To meet the varying levels of performances, three types of gradually complex post-PCB microfabrication process are developed and evaluated. By introducing land-grid-array sockets in the packaging, a scalable digital microfluidic system with a reconfigurable and low-cost chip is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号