首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 953 毫秒

1.  网页兴趣度度量方法及其在兴趣模型中的应用研究  
   南智敏  钱松荣《微型电脑应用》,2012年第28卷第6期
   根据用户以往网页浏览的隐式反馈信息来推断用户兴趣,给用户推荐感兴趣的网页内容,提出了网页兴趣度度量方法及其在兴趣模型中的应用。根据用户浏览网页时的停留时间和浏览行为,通过量化的兴趣度度量算法评估出用户对网页内容的感兴趣程度,从而建立起用户兴趣模型;在用户浏览网页的过程中,动态地更新用户兴趣;最终根据归纳出的用户兴趣向用户推荐文章。实验证明提出的网页兴趣度度量方法和对应的兴趣模型是可行的。    

2.  个性化推荐服务中用户兴趣模型研究  
   段小斌  陈基漓  张沫  阮百尧《计算机与信息技术》,2006年第12期
   本文提出了一种利用用户浏览页面集的内容信息和浏览行为信息,隐式地创建用户兴趣描述文件的方法。通过对用户浏览的web页面进行兴趣度分析,并与对用户浏览网页时的浏览行为分析相合,得到了用特征矩阵表示的用户兴趣模型。并采用层次聚类算法和k-means聚类算法相结合的综合聚类算法进行聚类,得到用兴趣分类树表示的用户兴趣模型。由于采用的是隐式创建用户描述文件的方法,减少了因用户参于而带来的系统噪声,保证了所创建的用户兴趣模型的准确性。    

3.  基于Web日志的煤矿企业网站个性化推荐服务研究  
   郭孝园  何臻《工矿自动化》,2012年第38卷第8期
   为了解决煤矿企业网站用户查找信息难的问题,提出了一种基于Web日志的煤矿企业网站个性化推荐服务模型。该模型应用关联规则对新用户进行页面推荐,应用聚类算法对老用户进行页面推荐;并结合点击网页的次数、网页的浏览时间、雅可系数与最长公共路径系数来度量用户兴趣度的方法,可为用户准确地推荐其感兴趣的页面。测试结果表明,该模型能够有效地对网页资源进行分类并进行个性化推荐。    

4.  基于用户浏览兴趣模糊聚类研究  
   周朕  王加阳《湖南工业职业技术学院学报》,2011年第12卷第2期
   聚类分析在面向电子商务的数据挖掘中具有重要的意义,网络信息提供服务亟待从用户被动接受访问到电子商务站点对用户进行主动信息推送服务。本文主要研究运用模糊聚类技术针对用户浏览兴趣度量实现用户群组划分,并进行有针对性地网页推荐、商品推荐和服务推荐。    

5.  基于近似网页聚类的智能搜索系统  被引次数:2
   彭曙蓉  蔡蕾  王耀南《微计算机信息》,2006年第12期
   从Internet用户的兴趣度出发,设计了一种基于近似网页聚类的智能搜索系统。该系统在用户利用常用搜索引擎系统进行信息检索时,消除搜索引擎返回的重复页,对剩余页面进行聚类,返回给用户聚类后的网页簇,这样用户就可以选择浏览自己感兴趣的页面,从而大大提高了信息检索的查准率;实验证明该系统在保证查全率和查准率的基础上大大提高了搜索效率。    

6.  基于模糊隶属度的个性化网页推荐系统  
   张培颖《计算机系统应用》,2008年第17卷第11期
   个性化信息服务越来越成为信息检索领域中研究的热点。针对用户模型的构造问题,文章利用用户浏览过的网页历史记录自动进行文本结构分析,获取网页信息的逻辑表示,将段落作为识别用户兴趣的基本要素,利用段落间的聚类分析和对用户兴趣的表达能力,获取最终的用户兴趣特征向量。提出了一种基于主题描述的二级层次用户模型,并给出了用户模型的动态调整算法,构建了一个基于模糊隶属度的个性化网页推荐系统。模拟实验表明,该用户模型和个性化推荐算法能够有效地提高检索结果的准确性,并且具有良好的适应性。    

7.  基于浏览历史的用户兴趣提取模型  
   张涛《软件导刊》,2009年第6期
   提出了一种基于用户浏览历史的用户兴趣提取模型,它隐式地收集用户信息用于个性化搜索中,即是通过对用户兴趣度的定义,在用户的浏览历史中得到一组代表用户兴趣的网页,并设计一个聚类算法,对这组代表用户兴趣的网页进行聚类操作,从而得到能代表此用户兴趣类别的词,即用户的兴趣。    

8.  一种基于用户行为的兴趣度模型  被引次数:2
   王微微  夏秀峰  李晓明《计算机工程与应用》,2012年第48卷第8期
   个性化推荐技术在电子商务系统中得到了广泛应用。针对现有的用户模型不能根据用户自身兴趣实现推荐的问题,提出了一种基于用户行为的兴趣度模型,分析用户的行为模式,结合用户的浏览内容,发现用户兴趣。在此基础上采用期望最大化算法实现用户聚类,将用户划分到对应的簇,创建用户的兴趣度模型,从而向用户进行个性化推荐。实验对比结果表明,该模型能更好地发现用户当前的购买兴趣,从而进一步提高个性化推荐精度和用户满意度。    

9.  一种基于常用搜索引擎的智能信息检索系统  
   杨文忠  章兢《微计算机应用》,2007年第28卷第2期
   针对用户利用常用搜索引擎查询信息时,搜索引擎返回海量杂乱、无序的网页,用户难以从中快速、准确地获得真正关心的信息的现状,从Internet用户的兴趣度出发,设计了一种基于近似网页聚类算法的智能搜索系统。该系统在用户利用常用搜索引擎系统进行信息检索时,消除搜索引擎返回的重复页,对剩余页面进行聚类,返回给用户聚类后的网页簇,这样用户就可以选择浏览自己感兴趣的页面,从而大大提高了信息检索的查准率;实验证明该系统在保证查全率和查准率的基础上大大提高了搜索效率。    

10.  结合用户交易情况的改进聚类算法  
   何典  宋中山  梁英《计算机应用与软件》,2007年第24卷第11期
   对通过URL-UserID关联矩阵得到页面聚类和用户聚类的算法进行了研究.指出了可以结合用户的交易结果来评价用户对商品页面的兴趣度,并给出了改进后的算法和计算过程,从而关联矩阵元素的权值能够更准确地反映用户对商品页面的感兴趣程度,使聚类分析结果更佳.    

11.  基于混合型的Web实时推荐模型研究  
   刘敏娴  马强《计算机工程与设计》,2011年第32卷第10期
   针对以往个性化网站实时推荐系统存在很难预测用户未来浏览页面的不足,提出了一个混合型的实时推荐模型。该模型将动态模糊聚类技术和改进的关联规则相结合,既挖掘用户与页面的相似度权值形成知识库,又考虑用户的访问事务集增量构造访问模式树,通过修剪其相关分枝,快速生成候选推荐集,由推荐引擎附加在请求页面的底部,在不干扰用户的访问同时,又将用户感兴趣的内容推荐给用户。实验结果表明,该方法能有效地提高推荐的精确率和覆盖率以及综合评价指标。    

12.  一个基于Web访问路径聚类的智能推荐系统  
   宋江春  沈钧毅《信息与控制》,2007年第36卷第1期
   提出了一个基于Web用户访问路径聚类的智能推荐系统.系统使用基于代理技术的结构,由离线的数据预处理和基于用户访问路径的URL聚类以及在线推荐引擎两部分组成.提出了一个基于用户浏览兴趣的推荐规则集生成算法,在度量用户浏览兴趣时综合考虑了用户浏览时间和对该页面的访问次数.提出了一个基于推荐规则集和站点URL路径长度的URL推荐算法.实验表明,该算法比使用基于关联规则和基于用户事务的推荐算法的精确性有较大幅度的提高.    

13.  以Web用户关联关系为属性的浏览模式聚类  
   吴瑞《计算机工程与应用》,2010年第46卷第30期
   在Web使用挖掘中,用户浏览模式的聚类结果有助于网站设计者理解Web用户的浏览特点和需要。设计了一种有效的Web浏览模式的聚类方法,网页是否被浏览及网页上的浏览时间反映了用户的浏览兴趣,它们被刻画成等长的用户浏览模式向量中的相应分量,此外,浏览模式之间的关系被刻画并被作为属性加入到该向量中,形成扩展的用户浏览模式向量,对这些向量使用粗糙k-均值法可对用户浏览模式进行有效的聚类。实例和实验分析说明,使用该方法的聚类结果更合理。聚类结果可用于个性化网站的设计。    

14.  基于用户兴趣特征提取的推荐算法研究*  被引次数:2
   刘枚莲  刘同存  李小龙《计算机应用研究》,2011年第28卷第5期
   传统的推荐算法一定程度上降低了网络消费者的搜索成本,但难以实时提供消费者满意的推荐服务,也忽略了用户偏好动态转移性。为了提高电子商务系统的推荐质量,从用户偏好的行为特征入手,建立了网络用户的兴趣特征提取模型,并设计了相应的推荐算法。通过对用户兴趣特征提取模型的检验和用户兴趣度矩阵的建立,依据与目标用户偏好相似的邻居用户对商品的兴趣程度预测用户对未浏览商品的兴趣度,并选择兴趣度值较高的N个商品推荐给用户。实验结果表明,在用户偏好动态转移的情况下,所设计的推荐算法的推荐精度和推荐效率明显提高,提高了网络用户的    

15.  基于兴趣的用户聚类分析在入侵检测中的应用  
   张欣  孙强  张蕾《计算机工程与设计》,2008年第29卷第6期
   在入侵检测中对用户进行聚类,可以改善安全分析的效率,有助于发现潜在非法用户.在聚类中提出按照访问兴趣对用户进行聚类分析,在用户访问兴趣度量中综合考虑网页内容和浏览路径因素.在聚类分析中,依据访问兴趣定义提出新的相似度计算方法.利用传递闭包法对用户进行聚类.算法可以提高用户聚类的准确性,试验结果表明该算法是有效的.    

16.  基于竞争凝聚的个性化网页推荐  
   余轶军  林怀忠  陈纯《浙江大学学报(工学版)》,2007年第41卷第2期
   为了提高网站访问效率并得到有价值的个性化网页推荐,针对Web日志的新特性,提出了一种新的基于竞争凝聚的聚类算法.新算法对K-paths聚类算法进行了扩展和改进,按照路径的相似性进行聚类,采用竞争凝聚的思想,自动确定最佳的聚类数目.由于算法考虑了用户的访问兴趣,个性化网页推荐不打扰用户且不需要用户注册信息.利用关联规则得到个性化网页推荐集.用户推荐集和页面推荐集的结合大大提高了推荐效果,具有较好的扩展性.实验结果表明,与其他聚类方法相比该算法具有更高的推荐精度.    

17.  一种融合聚类与用户兴趣偏好的协同过滤推荐算法  
   何明  孙望  肖润  刘伟世《计算机科学》,2017年第44卷第Z11期
   协同过滤推荐算法可以根据已知用户的偏好预测其可能感兴趣的项目,是现今最为成功、应用最广泛的推荐技术。然而,传统的协同过滤推荐算法受限于数据稀疏性问题,推荐结果较差。目前的协同过滤推荐算法大多只针对用户-项目评分矩阵进行数据分析,忽视了项目属性特征及用户对项目属性特征的偏好。针对上述问题,提出了一种融合聚类和用户兴趣偏好的协同过滤推荐算法。首先根据用户评分矩阵与项目类型信息,构建用户针对项目类型的用户兴趣偏好矩阵;然后利用K-Means算法对项目集进行聚类,并基于用户兴趣偏好矩阵查找待估值项所对应的近邻用户;在此基础上,通过结合项目相似度的加权Slope One算法在每一个项目类簇中对稀疏矩阵进行填充,以缓解数据稀疏性问题;进而基于用户兴趣偏好矩阵对用户进行聚类;最后,面向填充后的评分矩阵,在每一个用户类簇中使用基于用户的协同过滤算法对项目评分进行预测。实验结果表明,所提算法能够有效缓解原始评分矩阵的稀疏性问题,提升算法的推荐质量。    

18.  动态采集与关联规则在个性化推荐中的应用  
   国伟《信息技术与信息化》,2012年第6期
   一个网站有多个网页组成,网站上的信息分布在这些网页上,不同的用户对不同的网页上的信息感兴趣,如何满足用户对敏感网页的高效访问,我们提出一个基于使用挖掘的Web站点个性化信息服务系统来解决问题.利用Web使用挖掘技术来分析用户的浏览模式,根据用户的当前访问需要,自动实时地为用户提供推荐页面,实现个性化服务.    

19.  引入漂移特性的用户兴趣模型优化研究  
   南智敏  钱松荣《微型电脑应用》,2012年第28卷第3期
   根据用户浏览网页时的操作行为,通过量化的方法建立起用户兴趣模型来反映用户兴趣,从而针对不同用户推荐其可能感兴趣的文章。基于兴趣模型的更新效率问题和用户兴趣的漂移特性,引入兴趣模型的时间分段机制和时间衰减机制,对兴趣模型进行了持续优化。实验表明,优化的兴趣模型在系统性能上有较大的提升,并能较好地反映出用户的兴趣变化,对于用户兴趣的表征更加准确,从而进一步提高了兴趣模型推荐文章的准确率。    

20.  基于关联分类方法的web用户兴趣预测的研究  
   于春霞  宋新旗《制造业自动化》,2011年第33卷第2期
   在ACM SIGKDD(ACM Special Interest Group on Knowledge Discovery in Data and Data Mining)中,参访者将会浏览哪些产品商标(Hanes,Donna Karen,American Essentials,orOther);动机:用户在浏览网页时,我们可以提高浏览质量,此时我们可以把含有用户可能感兴趣的商标的网页推者给用户。就当前给定的用户访问的网页集和用户本身的一些信息来预测用户可能对哪些商标感兴趣。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号