首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
A novel bidirectional magnetic microactuator using electroplated permanent magnet arrays has been designed, fabricated and characterized. To realize a bidirectional microactuator, CoNiMnP-based permanent magnet arrays have been fabricated first on a silicon cantilever beam using a new electroplating technique. In the fabricated permanent magnets, the vertical coercivity and retentivity have been achieved up to 87.6 kA/m (1100 Oe) and 190 mT (1900 G), respectively by applying magnetic field during electroplating. A prototype bidirectional magnetic microactuator has been realized by integrating an electromagnet with a silicon cantilever beam, which has permanent magnet arrays on its tip. By applying a do current of 100 mA and altering its polarity, bidirectional motion on the tip of the cantilever beam has been successfully achieved in the deflection range of ±80 μm  相似文献   

2.
A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale. Magnetic paste is prepared from NdFeB powder and an epoxy resin, filled into lithographically defined photoresist molds or metal molds, and formed into resin-bonded magnets after curing at room temperature. A coercivity of 772.4 kA/m, a remanence of 0.27 T, and a maximum energy product of 22.6 kJ/m3 have been achieved in an NdFeB disk micromagnet with dimensions of Φ200 μm×70 μm. Based on the developed micro-patterning of resin-bonded magnets, a fully integrated electromagnetic vibration energy harvester has been designed and fabricated. The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm, and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm. This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.  相似文献   

3.
This paper reports a novel magnetic composite materials deposition technique called magnetic composite electroplating (MCE). Thin films and micromagnets arrays of a composite matrix consisting of magnetic particles and a ferromagnetic alloy have been fabricated based on this technique. In a typical MCE process, magnetic particles are electrochemically and mechanically embedded into electroplated ferromagnetic thin films to form a magnetic particle-alloy composite. The magnetic particle selected is a barium ferrite magnet (BaFe/sub 12/O/sub 19/) and the ferromagnetic matrix is a pulse-reverse electroplated CoNiP alloy. The particle embedded fraction (w.t. %) directly affects magnetic properties and is experimentally determined by its energy dispersive spectrum (EDS). Various factors including electrolyte particle concentration, applied current, electrolyte pH, and the presence of cationic surfactants affecting the particle embedded fraction are experimentally investigated. Arrays of BaFe/sub 12/O/sub 19/-CoNiP magnets with a variety of dimensions and features as small as 8/spl mu/m have been realized by MCE. Experimental analysis shows that the composite exhibits magnetic properties, such as a high coercivity (H/sub c/) of up to 1.75/spl times/10/sup 5/ A/m, particularly well suited for MEMS actuators.  相似文献   

4.
An acceleration sensor from polymer has been developed which balances a proof mass by magnetic forces. The sensor is fabricated from a polyimide membrane with conductor paths from gold patterned by photolithography and etching, a frame manufactured by ultrasonic hot embossing, and permanent magnets fixed to the frame. Except the conductor path and permanent magnets, all components are made of polymers on a planar substrate, and then the frame is kinked forming the desired three-dimensional structure. In a first try, a sensitivity of 0.46 V/(m/s²) was achieved, and cross axis sensitivity error was less than 3 %.  相似文献   

5.
Microfluidic magnetophoresis is an effective technique to separate magnetically labeled bioconjugates in lab-on-a-chip applications. However, it is challenging and expensive to fabricate and integrate microscale permanent magnets into microfluidic devices with conventional methods that use thin-film deposition and lithography. Here, we propose and demonstrate a simple and low-cost technique to fabricate microscale permanent magnetic microstructures and integrate them into microfluidic devices. In this method, microstructure channels were fabricated next to a microfluidic channel and were injected with a liquid mixture of neodymium (NdFeB) powders and polydimethylsiloxane (PDMS). After the mixture was cured, the resulted solid NdFeB–PDMS microstructure was permanently magnetized to form microscale magnets. The microscale magnets generate strong magnetic forces capable of separating magnetic particles in microfluidic channels. Systematic experiments and numerical simulations were conducted to study the geometric effects of the microscale magnets. It was found that rectangular microscale magnets generate larger \(({\mathbf {H}}\cdot \nabla ) {\mathbf {H}}\) which is proportional to magnetic force and have a wider range of influence than the semicircle or triangle magnets. For multiple connected rectangular microscale magnet, additional geometric parameters, including separation distance, height and width of the individual elements, further influence the particle separation and were characterized experimentally. With an optimal size combination, complete separation of yeast cells and magnetic microparticles of similar sizes (\(4\;\upmu \hbox {m}\)) was demonstrated with the multi-rectangular magnet microfluidic device.  相似文献   

6.
In this paper, we present the design, fabrication, and measurement results of a two-dimensional electromagnetic scanning micromirror actuated by radial magnetic field. The scanner is realized by combining a gimbaled single-crystal-silicon micromirror with a single turn electroplated metal coil, with a concentric permanent magnet assembly composed of two concentric permanent magnets and an iron yoke. The proposed scanner utilizes the radial magnetic field rather than using a lateral magnetic field oriented 45deg to the horizontal and vertical scan axes to achieve a biaxial magnetic actuation. The single turn coil fabricated with electroplated copper achieves a nominal resistance of 1.2 Omega. A two-dimensional scanner with mirror size of 1.5 mm in diameter was fabricated. Maximum optical scan angle of 8.8deg in horizontal direction and 8.3deg in vertical direction were achieved. Forced actuation of the gimbal at 60 Hz and resonant actuation of the micromirror at 19.1-19.7 kHz provide slow vertical scan and fast horizontal scan, respectively. The proposed scanner can be used in raster scanning laser display systems and other scanner applications.  相似文献   

7.
Permanent magnet micromotors on silicon substrates   总被引:2,自引:0,他引:2  
Different types of sliding, rolling, or rotating micromotors with rare-earth-based permanent magnet rotors are presented. The magnets move synchronously with rotating or traveling magnetic fields generated by 25-μm-thick gold current lines on silicon substrates. The magnets are guided in channels or openings in the silicon itself or in additional glass layers. For magnets with a typical dimension of 1 mm, forces and torques of 150 μN and 100 nNm could be achieved. Maximum velocities of 24 cm/s and a rotation frequency of 2000 r.p.m. have been measured. Magnetic clamping to the bottom confines the rotor to the system and allows a motor operation at any tilt angle. Noncontact magnetic transmission of forces to drive a ferromagnetic fluid has been demonstrated  相似文献   

8.
为了降低微型阀功耗,提出了一种新型磁性双稳态系统。该系统由两块钕铁硼材料环形永磁体和一片软磁片组成,其中软磁片选用钢和坡莫合金作为考查材料。采用有限元仿真的方法对软磁片受到的磁场力进行分析,结果显示:当软磁片半径较永磁体半径偏大10%左右时能够获得磁场力极值,同时通过调整两块永磁体之间的距离,软磁片所受到的磁场力能够比单永磁体作用下的受力大30%以上。对软磁片受力进行了测试并与有限元分析结果进行了比较,吻合较好,实验表明:该磁性双稳态系统能够很好地应用在微型阀当中。  相似文献   

9.
In this work, strontium ferrite/polyimide composite thin films are fabricated and characterized for micromachining applications. The application of these materials in microelectronics and micromachining dictates the use of different polymers than those previously used for conventional plastic magnets due to fabrication compatibility constraints. The material investigated here consists of magnetically anisotropic strontium ferrite particles suspended in a benzophenone tetracarboxylic dianhydride-oxydianiline/metaphenylene diamine polyimide matrix. Magnetic mechanical, and processability properties of these composites are investigated for a strontium ferrite loading range of 55%-80% by volume. Intrinsic coercivity Hci residual magnetic flux density Br and maximum energy product (BH)max have been determined. For an 80% by-volume concentration loading of ferrite, Hci of 318 kA/m Br, approaching 0.3 T, and (BH)max of 11900 T·A/m have been achieved. Biaxial Young's modulus and residual stress are determined using a slightly modified in situ load/deflection technique. The biaxial Young's modulus increases with increasing the magnetic powder loading. The materials have been deposited and patterned using two techniques: (1) screen-printing and (2) spin-casting, followed by photolithography. Finally, a simple magnetic microactuator made with those materials has been fabricated and tested, which demonstrates the usefulness of those materials to micromachining  相似文献   

10.
Concentrating particles to a detectable level is often necessary in many applications. Although magnetic force has long been used to enrich magnetic (or magnetically tagged) particles in suspensions, magnetic concentration of diamagnetic particles is relatively new and little reported. We demonstrate in this work a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel using negative magnetophoresis. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The magnet–magnet distance is mainly controlled by the thickness of the device substrate and can be made small, allowing for the use of a dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles, but also renders such handling biocompatible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号