共查询到20条相似文献,搜索用时 62 毫秒
1.
基于小波变换和改进的奇异值分解的人脸识别 总被引:1,自引:0,他引:1
使用基于肤色的检测方法分割出人脸并进行归一化,利用小波变换压缩降维以减少计算量。针对原有奇异值分解的不足,将图像矩阵进行投影,并将整体与三组局部图片的奇异值结合进行改进,利用BP神经网络进行分类识别,进行人脸识别仿真实验。结果表明,所提出的基于小波变换和改进的奇异值分解特征提取方法是一种实用、可行的方法。 相似文献
2.
基于小波和奇异值分解的人脸识别方法 总被引:2,自引:1,他引:2
该文提出了一种基于小波和奇异值分解的人脸识别方法。首先对人脸图象进行小波分解,由于小波变换具有良好的多尺度特征表达能力,能将图象的大部分能量集中到低频子图中,使图象得到有效压缩。然后,对得到的每幅低频子图进行基于奇异值分解的特征提取,并将奇异值特征向量进行压缩,把压缩后的特征向量作为每幅人脸图象的特征,进而求出每一类人脸图象的特征向量中心。最后,将每一类的特征向量中心输入到分类器中进行识别。最终得到了令人满意的识别结果。 相似文献
3.
4.
针对原有奇异值分解的不足,本文将图像矩阵进行投影,并对整体与三组局部奇异值结合进行改进,再利用BP神经网络进行分类识别,对该文提出的方法进行了人脸识别实验.结果表明,基于整体与部分组合的奇异值分解方法的识别率高于在原图上的奇异值分解等方法. 相似文献
5.
在人脸识别领域应用张量奇异值分解( TSVD)来进行人脸特征的表示和提取,克服了过去的提取方法,如主成分分析法( PCA)等过于依赖拍摄条件的缺点。 TSVD将数据转换成三维线性模型,所以能避免二维线性方法中条件改变则精确度下降的问题,使得识别算法在变化的条件下获得了相对稳定的结果。在此基础上对算法进行了优化,利用矩阵分解,在不影响算法正确率的情况下,有效减少计算量,提高算法效率。基于Matlab对该算法进行了四组实验,并将结果与用PCA方法得到的结果对比,验证了该识别算法在变化条件下显著的正确性以及稳定性;同时,对优化的TSVD算法进行了实验验证,在数据量较大的情况下,该算法速度明显提高。 相似文献
6.
提出了一种基于整体与局部奇异值分解相结合的人脸识别算法。文章叙述了人脸图像的预处理、奇异值分解以及支持向量机的原理及实现过程。运用整体与局部奇异值分解,分别获得图像的整体与局部特征,然后采用支持向量机进行分类识别,实验验证了该方法的有效性。 相似文献
7.
提出一种基于奇异值分解和径向基函数神经网络的人脸特征提取与识别方法,来解决人脸识别中的高维、小样本问题。该方法采用奇异值分解、奇异值降维压缩、奇异值矢量标准化和奇异值矢量排序,最后得到用于识别的奇异值特征矢量。运用基于径向基函数神经网络分类器进行人脸分类识别。在ORL数据库上进行实验和数据分析表明,该方法无论是在分类的错误率上还是在学习的效率上都能表现出极好的性能。 相似文献
8.
基于改进的PCA算法和Fisher线性判别的人脸识别技术 总被引:10,自引:0,他引:10
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和F isher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果. 相似文献
9.
10.
11.
一种基于Fisher鉴别极小准则的特征提取方法 总被引:3,自引:0,他引:3
特征提取是模式识别研究领域的一个热点.为了更好地解决人脸识别中的特征提取问题,定义了一种新的基于Fisher鉴别极小准则的特征提取方法,并且提出了类间散布矩阵零空间的概念,解决了先前Fisher线性变换方法中的最终特征维数受类别数的限制.在人脸数据库上的实验结果验证了该算法的有效性. 相似文献
12.
主成分分析算法(PCA)和线性鉴别分析算法(LDA)被广泛用于人脸识别技术中,但是PCA由于其计算复杂度高,致使人脸识别的实时性达不到要求.线性鉴别分析算法存在"小样本"和"边缘类"问题,降低了人脸识别的准确性.针对上述问题,提出使用二维主成分分析法(2DPCA)与改进的线性鉴别分析法相融合的方法.二维主成分分析法提取... 相似文献
13.
14.
基于特征加权的人脸识别 总被引:1,自引:0,他引:1
现有的人脸识别方法通常未考虑不同特征或像素对识别结果的影响。实际上,人脸面部不同特征在人脸识别过程中的作用是不同的。研究了各个特征在识别中的作用,分别采用三种加权方法对人脸图像进行了预处理,并应用流行的人脸识别方法(联想记忆、主分量分析和Fisher线性判别分析)进行识别。最后用标准人脸库ORL进行了实验,实验结果表明特征加权方法对人脸识别是有效且通用的。 相似文献
15.
16.
In existing Linear Discriminant Analysis (LDA) models, the class population mean is always estimated by the class sample average.
In small sample size problems, such as face and palm recognition, however, the class sample average does not suffice to provide
an accurate estimate of the class population mean based on a few of the given samples, particularly when there are outliers
in the training set. To overcome this weakness, the class median vector is used to estimate the class population mean in LDA
modeling. The class median vector has two advantages over the class sample average: (1) the class median (image) vector preserves
useful details in the sample images, and (2) the class median vector is robust to outliers that exist in the training sample
set. In addition, a weighting mechanism is adopted to refine the characterization of the within-class scatter so as to further
improve the robustness of the proposed model. The proposed Median Fisher Discriminator (MFD) method was evaluated using the
Yale and the AR face image databases and the PolyU (Polytechnic University) palmprint database. The experimental results demonstrated
the robustness and effectiveness of the proposed method. 相似文献
17.
提出了模块2DPCA(two-dimensional principal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 相似文献
18.
SVD与LDA相结合的人脸特征提取方法 总被引:1,自引:0,他引:1
提出一种新的SVD与LDA相结合的人脸特征提取方法.首先选用练训样本的均值图像作为标准图像,把训练样本投影到标准图像经奇异值分解产生的基空间中,其次提取投影系数矩阵左上角信息作为初步特征,最后再采用LDA分析方法降维提取最终的特征.该方法解决了奇异值分解用于人脸识别基空间不一致的固有缺陷,同时又增加的特征的类别信息,也避免了LDA的小样本问题.在ORL与CAS-PEAL人脸库的实验结果表明了该方法的有效性,同时对光照有一定的鲁棒性. 相似文献
19.
运用小波进行图像分解提取低频子带图,并利用优化的线性判别分析(LDA)算法寻找最优投影子空间,从而映射提取人脸特征,实现人脸的分类识别。该方法避免了传统LDA算法中类内离散度矩阵非奇异的要求,解决了边缘类重叠问题,具有更广泛的应用空间。实验表明:该方法优于传统的LDA方法和主分量分析(PCA)方法。 相似文献
20.
基于分块PCA的人脸识别方法 总被引:3,自引:0,他引:3
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法. 相似文献