首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The use of airborne laser scanning systems (lidar) to describe forest structure has increased dramatically since height profiling experiments nearly 30 years ago. The analyses in most studies employ a suite of frequency-based metrics calculated from the lidar height data, which are systematically eliminated from a full model using stepwise multiple linear regression. The resulting models often include highly correlated predictors with little physical justification for model formulation. We propose a method to aggregate discrete lidar height and intensity measurements into larger footprints to create “pseudo-waves”. Specifically, the returns are first sorted into height bins, sliced into narrow discrete elements, and finally smoothed using a spline function. The resulting “pseudo-waves” have many of the same characteristics of traditional waveform lidar data. We compared our method to a traditional frequency-based method to estimate tree height, canopy structure, stem density, and stand biomass in coniferous and deciduous stands in northern Wisconsin (USA). We found that the pseudo-wave approach had strong correlations for nearly all tree measurements including height (cross validated adjusted R2 (R2cv) = 0.82, RMSEcv = 2.09 m), mean stem diameter (R2cv = 0.64, RMSEcv = 6.15 cm), total aboveground biomass (R2cv = 0.74, RMSEcv = 74.03 kg ha− 1), and canopy coverage (R2cv = 0.79, RMSEcv = 5%). Moreover, the type of wave (derived from height and intensity or from height alone) had little effect on model formulation and fit. When wave-based and frequency-based models were compared, fit and mean square error were comparable, leading us to conclude that the pseudo-wave approach is a viable alternative because it has 1) an increased breadth of available metrics; 2) the potential to establish new meaningful metrics that capture unique patterns within the waves; 3) the ability to explain metric selection based on the physical structure of forests; and 4) lower correlation among independent variables.  相似文献   

2.
The use of lidar data to estimate critical variables needed for modeling wildfire behavior was tested on a Scots pine forest (Pinus sylvestris L.) in central Spain. Lidar data accurately estimated crown bulk density at the plot level (r2=0.80). Lidar data could be used to directly estimate crown volume (r2=0.92) and foliage biomass (r2=0.84), which together produced better results than directly fitting the lidar data to crown bulk density. Incorporating equations that relate tree diameter at breast height and other forest parameters improved estimates of foliage biomass. Individual tree level analyses were not completely successful due to difficulty in accurately assigning laser pulses to the correct tree (r2=0.14).  相似文献   

3.
The objectives of this study were to quantify and analyze differences in laser height and laser intensity distributions of individual trees obtained from airborne laser scanner (ALS) data for different canopy conditions (leaf-on vs. leaf-off) and sensors. It was also assessed how estimated tree height, stem diameter, and tree species were influenced by these differences. The study was based on 412 trees from a boreal forest reserve in Norway. Three different ALS acquisitions were carried out. Leaf-on and leaf-off data were acquired with the Optech ALTM 3100 sensor, and an additional leaf-on dataset was acquired using the Optech ALTM 1233 sensor. Laser echoes located within the vertical projection of the tree crowns were attributed to different echo categories (“first echoes of many”, “single echoes”, “last echoes of many”) and analyzed. The most pronounced changes in laser height distribution from leaf-on to leaf-off were found for the echo categories denoted as “single” and “last echoes of many” where the distributions were shifted towards the ground under leaf-off conditions. The most pronounced change in the intensity distribution was found for “first echoes of many” where the distribution was extremely skewed towards the lower values under leaf-off conditions compared to leaf-on. Furthermore, the echo height and intensity distributions obtained for the two different sensors also differed significantly. Individual tree properties were estimated fairly accurately in all acquisitions with RMSE ranging from 0.76 to 0.84 m for tree height and from 3.10 to 3.17 cm for stem diameter. It was revealed that tree species was an important model term in both and tree height and stem diameter models. A significantly higher overall accuracy of tree species classification was obtained using the leaf-off acquisition (90 vs. 98%) whereas classification accuracy did not differ much between sensors (90 vs. 93%).  相似文献   

4.
We evaluate the potential of deriving fractional cover (fCover) and leaf area index (LAI) from discrete return, small footprint airborne laser scanning (ALS) data. fCover was computed as the fraction of laser vegetation hits over the number of total laser echoes per unit area. Analogous to the concept of contact frequency, an effective LAI proxy was estimated by a fraction of first and last echo types inside the canopy. Validation was carried out using 83 hemispherical photographs georeferenced to centimeter accuracy by differential GPS, for which the respective gap fractions were computed over a range of zenith angles using the Gap Light Analyzer (GLA). LAI was computed by GLA from gap fraction estimations at zenith angles of 0-60°. For ALS data, different data trap sizes were used to compute fCover and LAI proxy, the range of radii was 2-25 m. For fCover, a data trap size of 2 m radius was used, whereas for LAI a radius of 15 m provided best results. fCover was estimated both from first and last echo data, with first echo data overestimating field fCover and last echo data underestimating field fCover. A multiple regression of fCover derived from both echo types with field fCover showed no increase of R2 compared to the regression of first echo data, and thus, we only used first echo data for fCover estimation. R2 for the fCover regression was 0.73, with an RMSE of 0.18. For the ALS LAI proxy, R2 was lower, at 0.69, while the RMSE was 0.01. For LAI larger radii (∼ 15 m ) provided best results for our canopy types, which is due to the importance of a larger range of zenith angles (0-60°) in LAI estimation from hemispherical photographs. Based on the regression results, maps of fCover and LAI were computed for our study area and compared qualitatively to equivalent maps based on imaging spectrometry, revealing similar spatial patterns and ranges of values.  相似文献   

5.
Various studies have been presented within the last 10 years on the possibilities for predicting forest variables such as stand volume and mean height by means of airborne laser scanning (ALS) data. These have usually considered tree stock as a whole, even though it is tree species-specific forest information that is of primary interest in Finland, for example. We will therefore concentrate here on prediction of the species-specific forest variables volume, stem number, basal area, basal area median diameter and tree height, applying the non-parametric k-MSN method to a combination of ALS data and aerial photographs in order to predict these stand attributes simultaneously for Scots pine, Norway spruce and deciduous trees as well as total characteristics as sums of the species-specific estimates. The predictor variables derived from the ALS data were based on the height distribution of vegetation hits, whereas spectral values and texture features were employed in the case of the aerial photographs. The data covered 463 sample plots in 67 stands in eastern Finland, and the results showed that this approach can be used to predict species-specific forest variables at least as accurately as from the current stand-level field inventory for Finland. The characteristics of Scots pine and Norway spruce were predicted more accurately than those of deciduous trees.  相似文献   

6.
Canopy height distributions were created from small-footprint airborne laser scanner (ALS) data collected over 40 field sample plots with size 1000 m2 located in mature conifer forest. ALS data were collected with two different instruments, i.e., the ALTM 1233 and ALTM 3100 laser scanners (Optech Inc.). The ALTM 1233 data were acquired at a flying altitude of 1200 m and a pulse repetition frequency (PRF) of 33 kHz. Three different acquisitions were carried out with ALTM 3100, i.e., (1) a flying altitude of 1100 m and a PRF of 50 kHz, (2) a flying altitude of 1100 m and a PRF of 100 kHz, and (3) a flying altitude of 2000 m and a PRF of 50 kHz. Height percentiles, mean and maximum height values, coefficients of variation of the heights, and canopy density at different height intervals above the ground were derived from the four different ALS datasets and for single + first and last echoes of the ALS data separately. The ALS-derived height- and density variables were assessed in pair-wise comparisons to evaluate the effects of (a) instrument, (b) flying altitude, and (c) PRF. A systematic shift in height values of up to 0.3 m between sensors when the first echoes were compared was demonstrated. Also the density-related variables differed significantly between the two instruments. Comparisons of flying altitudes and PRFs revealed upwards shifted canopy height distributions for the highest flying altitude (2000 m) and the lowest PRF (50 kHz). The distribution of echoes on different echo categories, i.e., single and multiple (first and last) echoes, differed significantly between acquisitions. The proportion of multiple echoes decreased with increasing flying altitude and PRF. Different echo categories have different properties since it is likely that single echoes tend to occur in the densest parts of the tree crowns, i.e., near the apex where the concentration of biological matter is highest and distance to the ground is largest. To assess the influence of instrument, flying altitude, and PRF on biophysical properties derived from ALS data, regression analysis was carried out to relate ALS-derived metrics to mean tree height (hL) and timber volume (V). Cross validation revealed only minor differences in precision for the different ALS acquisitions, but systematic differences between acquisitions of up to 2.5% for hL and 10.7% for V were found when comparing data from different acquisitions.  相似文献   

7.
Regression models relating variables derived from airborne laser scanning (ALS) to above-ground and below-ground biomass were estimated for 1395 sample plots in young and mature coniferous forest located in ten different areas within the boreal forest zone of Norway. The sample plots were measured as part of large-scale operational forest inventories. Four different ALS instruments were used and point density varied from 0.7 to 1.2 m− 2. One variable related to canopy height and one related to canopy density were used as independent variables in the regressions. The statistical effects of area and age class were assessed by including dummy variables in the models. Tree species composition was treated as continuous variables. The proportion of explained variability was 88% for above- and 85% for below-ground biomass models. For given combinations of ALS-derived variables, the differences between the areas were up to 32% for above-ground biomass and 38% for below-ground biomass. The proportion of spruce had a significant impact on both the estimated models. The proportion of broadleaves had a significant effect on above-ground biomass only, while the effect of age class was significant only in the below-ground biomass model. Because of local effects on the biomass-ALS data relationships, it is indicated by this study that sample plots distributed over the entire area would be needed when using ALS for regional or national biomass monitoring.  相似文献   

8.
Due to increased fuel loading as a result of fire suppression, land managers in the American west are in need of precise information about the fuels they manage, including canopy fuels. Canopy fuel metrics such as canopy height (CH), canopy base height (CBH), canopy bulk density (CBD) and available canopy fuel (ACF) are specific inputs for wildfire behavior models such as FARSITE and emission models such as FOFEM. With finer spatial resolution data, accurate quantification of these metrics with detailed spatial heterogeneity can be accomplished. Light Detection and Ranging (LiDAR) and color near-infrared imagery are active and passive systems, respectively, that have been utilized for measuring a range of forest structure characteristics at high resolution. The objective of this research was to determine which remote sensing dataset can estimate canopy fuels more accurately and whether a fusion of these datasets produces more accurate estimates. Regression models were developed for ponderosa pine (Pinus ponderosa) stand representative of eastern Washington State using field data collected in the Ahtanum State Forest and metrics derived from LiDAR and imagery. Strong relationships were found with LiDAR alone and LiDAR was found to increase canopy fuel accuracy compared to imagery. Fusing LiDAR with imagery and/or LiDAR intensity led to small increases in estimation accuracy over LiDAR alone. By improving the ability to estimate canopy fuels at higher spatial resolutions, spatially explicit fuel layers can be created and used in wildfire behavior and smoke emission models leading to more accurate estimations of crown fire risk and smoke related emissions.  相似文献   

9.
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A fully automated, local-minima algorithm was developed to separate lidar ground returns from overlying vegetation returns. We then assessed inverse distance weighted (IDW) and ordinary kriging (OK) geostatistical techniques for the interpolation of a sub-canopy DTM. OK was determined to be a superior interpolation scheme because it smoothed fine-scale variance created by spurious understory heights in the ground-point dataset. The final DTM had a linear correlation of 1.00 and a root-mean-square error (RMSE) of 2.29 m when compared against 3859 well-distributed ground-survey points. In old-growth forests, RMS error on steep slopes was 0.67 m greater than on flat slopes. On flatter slopes, variation in vegetation complexity associated with land use caused highly significant differences in DTM error distribution across the landscape. The highest DTM accuracy observed in this study was 0.58-m RMSE, under flat, open-canopy areas with relatively smooth surfaces. Lidar ground retrieval was complicated by dense, multi-layered evergreen canopy in old-growth forests, causing DTM overestimation that increased RMS error to 1.95 m.A DCM was calculated from the original lidar surface and the interpolated DTM. Individual and plot-scale heights were estimated from DCM metrics and compared to field data measured using similar spatial supports and metrics. For old-growth forest emergent trees and isolated pasture trees greater than 20 m tall, individual tree heights were underestimated and had 3.67- and 2.33-m mean absolute error (MAE), respectively. Linear-regression models explained 51% (4.15-m RMSE) and 95% (2.41-m RMSE) of the variance, respectively. It was determined that improved elevation and field-height estimation in pastures explained why individual pasture trees could be estimated more accurately than old-growth trees. Mean height of tree stems in 32 young agroforestry plantation plots (0.38 to 18.53 m tall) was estimated with a mean absolute error of 0.90 m (r2=0.97; 1.08-m model RMSE) using the mean of lidar returns in the plot. As in other small-footprint lidar studies, plot mean height was underestimated; however, our plot-scale results have stronger linear models for tropical, leaf-on hardwood trees than has been previously reported for temperate-zone conifer and deciduous hardwoods.  相似文献   

10.
A comprehensive canopy characterization of forests is derived from the combined remote sensing signal of imaging spectrometry and large footprint LIDAR. The inversion of two linked physically based Radiative Transfer Models (RTM) provided the platform for synergistically exploiting the specific and independent information dimensions obtained by the two earth observation systems. Due to its measurement principle, LIght Detection And Ranging (LIDAR) is particularly suited to assess the horizontal and vertical canopy structure of forests, while the spectral measurements of imaging spectrometry are specifically rich on information for biophysical and -chemical canopy properties. In the presented approach, the specific information content inherent to the observations of the respective sensor was not only able to complement the canopy characterization, but also helped to solve the ill-posed problem of the RTM inversion. The theoretical feasibility of the proposed earth observation concept has been tested on a synthetic data set generated by a forest growth model for a wide range of forest stands. Robust estimates on forest canopy characteristics were achieved, ranging from maximal tree height, fractional cover (fcover), Leaf Area Index (LAI) to the foliage chlorophyll and water content. The introduction of prior information on the canopy structure derived from large footprint LIDAR observations significantly improved the retrieval performance relative to estimates based solely on spectral information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号