首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high-computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze.We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.  相似文献   

2.
This paper presents VyrdMC, a runtime verification tool we are building for concurrent software components. The correctness criterion checked by VyrdMC is refinement: Each execution of the implementation must be consistent with an atomic execution of the specification. VyrdMC combines testing, model checking, and Vyrd, the runtime refinement checker we developed earlier. A test harness first drives the component to a non-trivial state which serves as the starting state for a number of simple, very small multi-threaded test cases. An execution-based model checker explores for each test case all distinct thread interleavings while Vyrd monitors executions for refinement violations. This combined approach has the advantage of improving the coverage of runtime refinement checking at modest additional computational cost, since model checkers are only used to explore thread interleavings of a small, fixed test program. The visibility and detailed checking offered by using refinement as the correctness criterion differentiate our approach from simply being a restricted application of model checking. An important side benefit is the reduction in program instrumentation made possible if VyrdMC is built using a model checker with its own virtual machine, such as Java PathFinder [Guillaume Brat, Klaus Havelund, Seung-Joon Park, and Willem Visser. Model Checking Programs. In IEEE International Conference on Automated Software Engineering (ASE), September 2000]. We are investigating the use of two different model checkers for building VyrdMC: Java PathFinder, an explicit-state model checker and Verisoft, a “stateless” model checker [P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings of the 24th ACM Symposium on Principles of Programming Languages, pages 174–186, Paris, January 1997].  相似文献   

3.
This paper presents an approach for the automated debugging of reactive and concurrent Java programs, combining model checking and runtime monitoring. Runtime monitoring is used to transform the Java execution traces into the input for the model checker, the purpose of which is twofold. First, it checks these execution traces against properties written in linear temporal logic (LTL), which represent desirable or undesirable behaviors. Second, it produces several execution traces for a single Java program by generating test inputs and exploring different schedulings in multithreaded programs. As state explosion is the main drawback to model checking, we propose two abstraction approaches to reduce the memory requirements when storing Java states. We also present the formal framework to clarify which kinds of LTL safety and liveness formulas can be correctly analysed with each abstraction for both finite and infinite program executions. A major advantage of our approach comes from the model checker, which stores the trace of each failed execution, allowing the programmer to replay these executions to locate the bugs. Our current implementation, the tool TJT, uses Spin as the model checker and the Java Debug Interface (JDI) for runtime monitoring. TJT is presented as an Eclipse plug-in and it has been successfully applied to debug complex public Java programs.  相似文献   

4.
We present Delta Execution, a technique that speeds up state-space exploration of object-oriented programs. State-space exploration is the essence of model checking and an increasingly popular approach for automating test generation. A key issue in exploration of object-oriented programs is handling the program state, in particular the heap. We exploit the fact that many execution paths in state-space exploration partially overlap. Delta Execution simultaneously operates on several states/heaps and shares the common parts across the executions, separately executing only the "deltas" where the executions differ. We implemented Delta Execution in two model checkers: JPF, a popular general-purpose model checker for Java programs, and BOX, a specialized model checker that we developed for efficient exploration of sequential Java programs. The results for bounded-exhaustive exploration of ten basic subject programs and one larger case study show that Delta Execution reduces exploration time from 1.06x to 126.80x (with median 5.60x) in JPF and from 0.58x to 4.16x (with median 2.23x) in BOX. The results for a non-exhaustive exploration in JPF show that Delta Execution reduces exploration time from 0.92x to 6.28x (with median 4.52x).  相似文献   

5.
One approach to model checking program source code is to view a model checker as a target machine. In this setting, program source code is translated to a model checker’s input language using a process that shares much in common with program compilation. For example, well-defined intermediate program representations are used to stage the translation through a series of analyses and optimizing transformations and target-specific details are isolated in code generation modules.In this paper, we present the Bandera Intermediate Representation (BIR)—a guarded-assignment transformation system language that has been designed to support the translation of Java programs to a variety of model checkers. BIR includes constructs, such as inheritance, dynamic creation of data, and locking primitives, that are designed to model the semantics of Java primitives. BIR also includes several non-deterministic choice constructs that support abstraction in modeling and specification of properties of dynamic heap structures.We have developed a BIR-based tool infrastructure that has been applied to develop customized analysis frameworks for several different input languages using different model checking tools. We present BIR’s type system and operational semantics in sufficient detail to support similar applications by other researchers. This semantics details several state space reductions and state space search variations. We describe the translation of Java to BIR and how BIR is translated to the input languages of several model checkers.  相似文献   

6.
一种大规模并行程序模型的检测方法   总被引:2,自引:1,他引:1       下载免费PDF全文
JPF是NASA开发的Java程序模型检测工具。该文通过改写JPF内核中生成状态空间的模块,使待检测程序在受监控状态下模拟执行。用Data-Race算法收集警告信息,引导程序模型检测工具只对死锁相关线程进行模型检测,避免了状态空间爆炸,实现了对大规模并行程序部分线程死锁问题的模型检测。利用启发式搜索算法,在不同的搜索深度赋给待执行线程不同的权值,进一步优化了模拟执行 结果。  相似文献   

7.
This paper gives an overview of our recent work on an approach to verifying multi-agent programs. We automatically translate multi-agent systems programmed in the logic-based agent-oriented programming language AgentSpeak into either Promela or Java, and then use the associated Spin and JPF model checkers to verify the resulting systems. We also describe the simplified BDI logical language that is used to write the properties we want the systems to satisfy. The approach is illustrated by means of a simple case study.  相似文献   

8.
于银菠  刘家佳  慕德俊 《软件学报》2022,33(6):1961-1977
软件验证一直是确保软件正确性和安全性的热点研究问题.然而,由于程序语言复杂的语法语义特性,应用形式化方法验证程序的正确性存在准确度低和效率差的问题.其中,由指针操作带来的地址空间的状态变化使得现有模型检测方法的检测准确度难以得到保证.为此,通过结合模型检测与稀疏值流分析方法,设计了一种空间流模型,实现了对C程序在符号变量层面和地址空间层面的状态行为的有效描述,并提出了一种反例引导的抽象细化和稀疏值流强更新算法(CEGAS),实现了C程序指向信息敏感的形式化验证.建立了包含多种指针操作的C代码基准库,并基于该基准库进行了对比实验.实验结果表明:所提出的模型检测算法CEGAS在分析含有多种C代码特性的任务中,与现有模型检测工具相比均能取得突出的结果,其检测准确度为92.9%,每行代码的平均检测时间为2.58 ms,优于现有检测工具.  相似文献   

9.
Model checkers verify properties of safety- or business-critical systems. The main idea behind model checking is to convert a design's verification into a problem of checking key design properties expressed as a set of temporal logic formulas. The graph representing the design's state space then becomes the basis for testing these formulas' satisfiability (SAT). This divide-and-conquer approach provides an overall test for design correctness. We describe a method for checking safety properties using sequential SAT. SSAT can efficiently prove true properties by harnessing the power of bounded model checking (BMC) using SAT, but without the need for a pre-computed correctness threshold. Using a standard set of benchmarks, we conducted experiments to compare the runtime behavior of SSAT with BMC and binary decision diagrams (BDDs).  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号