首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于无锚点的单阶段全卷积目标检测算法(FCOS)无需生成大量的锚点避免了样本不平衡问题,但FCOS可能更适应于某一特定场景。为了增强特征融合,并提高目标检测的准确性,提出了全卷积目标检测算法FCOS的改进算法ConFCOS。该算法设计了一个增强的特征金字塔网络,引入带有全局上下文信息的注意力模块和空洞卷积模块,以减少特征融合过程中的信息衰减。另外,构建了一个级联检测头来检测对象,对检测的边界框进行细化来提高分类和回归的置信度。此外,针对提出的ConFCOS的损失函数进行了优化以提高目标检测的准确率。在COCO数据集上进行的实验表明,ConFCOS的准确度比FCOS提高了1.6个百分点。  相似文献   

2.
基于深度学习的遥感图像目标检测方法通常难以排除复杂场景下的背景干扰,从而导致检测精度低。为解决该问题,设计了一种基于尺度分层的特征金字塔结构,并提出了一种基于距离约束的中心回归(distance-constraints centerness,DCCN),从而形成了基于距离约束的改进FCOS遥感图像检测方法。基于尺度分层的特征金字塔结构包括高层语义信息激活模块和低层有效特征感知模块,其中高层语义信息模块重构了特征融合阶段对高层特征图的处理方式,提升了特征金字塔顶部区域的语义感知能力,低层有效特征感知模块通过引入通道注意力机制,增强了通道间的信息交互能力。DCCN能够利用预测样本框与真实样本框之间的距离因素作为回归评估条件,提升了预测框的回归效果。在NWPU VHR-10数据集的实验中,该方法的精度达到92.6%,相比于原FCOS方法提升了4.9个百分点,有效改善了遥感图像检测的精度。  相似文献   

3.
针对经典的有锚框检测算法RetinaNet、无锚框检测算法FCOS等目标检测算法中存在漏检以及重复检测的问题,提出一种自适应特征融合与cosIoU-NMS的目标检测算法.首先采用自适应特征融合模块对多尺度特征中相邻3层特征加权融合,获取丰富的上下文信息和空间信息;然后采用cosIoU计算检测框之间的余弦相似度与重叠面积,使目标定位更准确;最后使用cosIoU-NMS代替Greedy-NMS抑制置信度分数较高的冗余框,保留更准确的检测结果.以RetinaNet和FCOS为基准,在PASCAL VOC数据集上的实验结果表明,所提算法的检测精度达到81.3%和82.3%,分别提升2.8个百分点和1.2个百分点;在MSCOCO数据集上检测精度达到36.8%和38.0%,分别提升1.0个百分点和0.7个百分点;该算法能够增强特征表征能力,筛除多余的检测框,有效地提高检测性能.  相似文献   

4.
随着人口老龄化程度的不断深化,跌倒检测成为医疗与健康领域的一个关键问题。针对复杂场景下跌倒检测算法准确率偏低的问题,提出一种改进的跌倒检测模型——PDD-FCOS(PVT DRFPN DIoU-Fully Convolutional One-Stage object detection)。在基准FCOS算法的骨干网络中引入金字塔视觉转换器(PVT),以不增加计算量为前提提取更丰富的语义信息;在特征信息融合阶段插入双重细化特征金字塔网络(DRFPN),更加准确地学习特征图之间采样点的位置和其他信息,并通过上下文信息捕获特征通道之间更准确的语义关系,从而提升检测性能;训练阶段采用距离交并比(DIoU)损失进行边界框回归,通过优化预测框与目标框中心点的距离,使回归框收敛得更快更准确,从而有效提高跌倒检测算法的准确率。实验结果表明,所提模型在开源数据集Fall detection Database上平均精确度均值(mAP)达到82.2%,与基准FCOS算法相比,所提算法的mAP提升了6.4个百分点,且相较于其他主流目标检测算法有精度上的提升以及更好的泛化能力。  相似文献   

5.
针对当前遥感影像背景复杂、目标尺度小等情况导致的检测精度偏低的问题,基于FCOS网络提出了一种结合位置注意力和感受野增强的遥感影像目标检测算法PARF-FCOS;该算法构造了一种位置注意力模块,并利用该模块对特征提取网络进行改进,增强网络对目标信息的提取能力;在特征融合阶段使用感受野模块(RFB, receptive field block)增强浅层特征图,利用目标上下文信息进行辅助判断,提升网络对小尺度目标的检测能力;在训练过程中,引入距离交并比损失(DIoU loss,distance intersection over union loss)进行边界框回归,通过优化目标框与预测框中心点之间的距离,使回归过程更加平稳和准确;在公开数据集DIOR上评估了PARF-FCOS目标检测算法,实验结果表明,相较于原始FCOS,算法的平均精确度均值提高了4.3%,达到70.4%,检测速度达到23.2FPS。  相似文献   

6.
针对目前传统铁路异物侵线检测算法识别精度不高、对于小尺度目标异物存在漏检等问题,提出一种基于改进Faster RCNN的小尺度铁路侵限算法。在特征提取网络中利用特征金字塔模型将高层特征与低层特征相融合;通过修改锚点框尺寸和增加锚点个数来提高对目标建议区域的精确性;提出一种基于衰减得分的NMS算法;在引入迁移学习思想同时利用在线难例挖掘训练网络以解决数据缺乏、训练难收敛的问题。实验结果表明,改进的Faster RCNN与传统的Faster RCNN网络相比,mAP (mean average precision)提高了2.1%,对小目标的识别有较好准确度。  相似文献   

7.
目的 主流深度学习的目标检测技术对自然影像的识别精度依赖于锚框设置的好坏,并使用平行于坐标轴的正框表示物体位置,而遥感影像中地物目标具有尺寸多变、分布密集、长宽比悬殊且朝向不定的特点,更宜通过与物体朝向一致的斜框表示其位置。本文试图结合无锚框和斜框检测技术,在遥感影像上实现高精度目标识别。方法 使用斜框标注能够更为紧密地贴合目标边缘,有效减少识别干扰因素。本文基于单阶段无锚框目标检测算法:一阶全卷积目标检测网络(fully convolutional one-stage object detector,FCOS),通过引入滑动点结构,在遥感影像上实现高效率、高精度的斜框目标检测。与FCOS的不同之处在于,本文改进的检测算法增加了用于斜框检测的两个分支,通过在正框的两邻边上回归滑动顶点比率产生斜框,并预测斜框与正框的面积比以减少极端情况下的检测误差。结果 在当前最大、最复杂的斜框遥感目标检测数据集DOTA (object detection in aerial images)上对本文方法进行评测,使用ResNet50作为骨干网络,平均精确率(mean average precision,mAP)达到74.84%,相比原始正框FCOS算法精度提升了33.02%,相比于YOLOv3(you only look once)效率提升了38.82%,比斜框检测算法R3Det (refined rotation RetinaNet)精度提升了1.53%。结论 实验结果说明改进的FCOS算法能够很好地适应高分辨率遥感倾斜目标识别场景。  相似文献   

8.
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE。在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以提升检验框检测的准确率。实验结果表明,对比标准的YOLOv5算法,YOLOv5-CHE算法的平均精度均值(mean average precision,mAP)、精准率和召回率分别提升了3.8个百分点、1.8个百分点和1.5个百分点,验证了该算法对白细胞检测具有很好的效果。  相似文献   

9.
针对狭小空间中目标相互遮挡导致轻型检测网络存在大量漏检、分类错误等问题,基于YOLOv4-tiny提出一种自适应非极大抑制(adaptive non-maximum suppression,A-NMS)的多尺度检测方法。在骨干网络引入大尺度特征图优化策略和金字塔池化模型,增强遮挡目标显著区域特征;设计内嵌空间注意力的双路金字塔特征融合网络,提升浅层细节特征与高级语义信息的融合能力;提出区域目标密度与边界框中心距离因子相关联的动态NMS阈值设定方法,并在后处理阶段代替传统IoU-NMS算法,进一步减少漏检。实验结果表明,与YOLOv4-tiny算法相比,改进算法在公开数据集PASCAL VOC07+12和自制数据集上mAP值分别提高2.84个百分点和3.06个百分点,FPS保持在87.9,对遮挡目标的检测能力显著提升,满足移动端对狭小复杂场景实时检测的需求。  相似文献   

10.
针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中细粒度特征提取和小目标检测能力;增加SE注意力机制,解决在卷积过程中,因丢失图像全局上下文信息,造成特征损失的问题,提高了模型在图像模糊情况下小目标的检测精度;引入一种新的边界框回归损失函数SIoU Loss,解决了预测框在回归时随意匹配的问题,提高了模型鲁棒性和泛化能力,加快网络的收敛速度。实验结果表明,相比于YOLOv5x模型,将改进后的算法应用在水下移动机器人生物检测中,模型准确率P、召回率R、各类平均精度mAP分别提升了5.90个百分点、5.85个百分点、4.38个百分点,有效增强了小目标检测模型的检测性能。  相似文献   

11.
目的 船舶在合成孔径雷达(synthetic aperture radar, SAR)图像中的检测是研究热点,但目前适合近岸舰船检测的方法并不多。在SAR图像中,近岸舰船受到岸上建筑物的干扰严重,尤其是对于排列紧密的近岸船舶来说,其对比度相似,很难区分船舶与背景。为解决近岸舰船检测困难问题,提出了一种基于加权双向注意金字塔网络的近岸舰船检测方法。方法 本文在FCOS (fully convolutional one-stage)网络的基础上提出了一种新的双向特征金字塔网络。将卷积注意力机制模块(convolutional block attention module,CBAM)与金字塔网络的每个特征图进行连接,提取丰富的语义信息特征;借鉴PANet (path aggregation network)的思想,添加自下而上的金字塔模块,突出不同尺度船舶的显著特征。最后提出了一种加权特征融合方式,使特征图提取的特征信息的着重点不同,提高舰船检测精度。结果 本文在公开的SAR图像舰船数据集SSDD (SAR ship detection dataset)上进行实验。实验结果表明,相比原FCOS方法,本文方法的检测精度提高了9.5%;与对比方法相比,本文方法在同等条件下的检测精度达到90.2%。在速度方面,本文方法比SSD提高0.6 s,比Faster R-CNN (region convolutional neural network)提高1.67 s,明显优于对比方法。结论 本文通过改进特征网络和特征融合方式,提高了算法对SAR图像舰船目标检测中背景复杂、排列紧密的近岸舰船目标的定位效果,有效增强了对舰船目标定位的准确性。  相似文献   

12.
无人机航拍图像目标较小、图像视角变化大,导致目标检测效果不佳。针对此问题,设计了一种适用于无人机小目标检测的网络。该网络中的可变形卷积模块可以提高多视角目标的特征提取能力,以解决航拍图像目标视角变化剧烈致使目标特征难以提取的问题;特征平衡金字塔模块可以增强网络中底层小目标特征,以解决航拍图像中的小目标因特征易丢失而造成其检测效果差的问题;同时利用像素重组构建底层大尺度特征以解决特征平衡金字塔模块的底层特征卷积运算量大的问题;交叉自注意力机制获取目标上下文信息,改善严苛条件下的漏检错检问题。公开数据集上的仿真结果表明,在保证实时检测的情况下所提算法的平均准确度优于主流检测算法。  相似文献   

13.
针对机场跑道异物(foreign object debris,FOD)在图像中目标占比小,特征不明显,经常导致误检、漏检的问题,提出一种改进YOLOv5的FOD目标检测算法。改进多尺度融合与检测部分,融合高分辨率特征图增强小目标特征表达,移除大目标检测层以减少网络推理计算量;引入轻量高效的卷积注意力模块(CBAM),从空间与通道两个维度提升模型关注目标特征的能力;在特征融合阶段采用RepVGG模块,提高模型特征融合能力的同时提高了检测精度;采用SIoU Loss作为损失函数,提升了边框回归的速度与精度。在自制FOD数据集上进行对比实验,结果表明:该方法在满足实时性的条件下,实现了95.01%的mAP50、55.79%的mAP50:95,比原算法YOLOv5分别提高了2.78、3.28个百分点,有效解决了传统FOD检测误检、漏检问题,同时与主流目标检测算法相比,提出的改进算法更适用于FOD检测任务。  相似文献   

14.
针对复杂道路背景下的密集遮挡目标和小目标导致的误检、漏检问题,提出一种基于改进YOLOv5的复杂道路目标检测算法。引入Quality Focal Loss,将分类得分与位置的质量预测结合,提高了对密集遮挡目标的定位精度;增加一层浅层检测层作为更小目标的检测层,将原始算法的三尺度检测改为四尺度,特征融合部分也作相应改进,提高了算法对小目标特征的学习能力;借鉴加权双向特征金字塔网络(BiFPN)的特征融合思想,提出了去权重的BiFPN,充分利用深层、浅层以及原始的特征信息,加强了特征融合,减少了卷积过程中特征信息的丢失,提高了检测精度;引入卷积块注意模块(CBAM),进一步提升了算法的特征提取能力,让算法更关注有用的信息。实验结果表明,该改进算法在公开的自动驾驶数据集KITTI和自制的骑乘人员头盔数据集Helmet上的检测精度分别达到了94.9%和96.8%,相比原始算法分别提高了1.9个百分点和2.1个百分点的检测精度,检测速度分别达到了69 FPS和68 FPS,具有较好的检测精度与实时性,同时与一些主流的目标检测算法相比,该改进算法也有一定的优越性。  相似文献   

15.
针对金属表面缺陷检测中目标尺寸小和特征不清晰导致漏检的问题,提出一种改进YOLOv3的金属缺陷检测算法。在YOLOv3网络结构的基础上,将第11层浅层特征与网络深层特征融合,生成一个新的尺度为104×104特征图层,提取更多小缺陷目标特征。加入DIoU边框回归损失,为边界框提供移动方向以及更准确的位置信息,加快模型收敛。利用K-Means++聚类分析数据集上的先验框尺寸信息,筛选出最优的Anchor Box,使定位更加精准,降低网络损失。将改进后的算法与其他检测算法在NEU-DET数据集上进行检测性能对比。实验分析表明改进后的YOLOv3平均检测速率为31.6?frame/s;平均检测精度为67.64%,比YOLOv3提高了7.49个百分点,相较于Faster R-CNN等算法也有较大的检测精度优势。结论表明,改进后的YOLOv3可以使小缺陷目标的位置信息和精度更加准确。  相似文献   

16.
Anchor作为行人检测算法中的初始框,可以解决行人平移问题和缓解行人尺度变化问题,目前的行人检测算法通常都基于anchor.然而,使用anchor就需要精心调整对检测性能影响非常大的anchor超参数,如anchor的尺度和高宽比等.为避免这一问题,提出一种基于anchor-free损失函数的行人检测算法,并通过融合特征金字塔网络(FPN)所有检测分支的特征,使anchor-free行人检测算法在训练过程中不需要为FPN的每个检测分支设置有效的训练尺度范围.另外,还提出一个尺度注意力(scale attention,SA)模块,用于融合FPN所有检测分支特征的过程,使网络在检测某个尺度的行人时,能够自适应地为行人所对应的不同尺度的感兴趣区域(ROI)特征赋予合适的权重.实验结果显示,所提出的行人检测算法不仅可以实现anchor-free,从而避免anchor的超参数调整问题,而且在性能上优于其他行人检测算法,在CityPersons数据集上取得了目前最好的效果9.19%MR-2.  相似文献   

17.
刘子威  邓春华  刘静 《计算机应用》2020,40(12):3526-3533
基于无锚框深度学习的目标检测是一种主流的单阶段目标检测算法。融合多层监督信息的沙漏网络结构能够显著提升无锚框目标检测算法的精度,然而其速度却远低于同层次的普通网络的速度,并且不同尺度目标间的特征会互相干扰。针对上述问题,提出了一种非对称沙漏网络结构的目标检测算法。该算法在融合不同网络层的特征时不受形状大小的约束,能够快速高效抽象出网络的语义信息,使模型更容易学习到各种尺度之间的差异。针对不同尺度目标检测问题,设计了一种多尺度输出的沙漏网络结构用来解决不同尺度目标间特征互相干扰的问题,并精细化输出的检测结果。另外,针对多尺度输出使用了一种特殊的非极大值抑制算法以提高检测算法的召回率。实验结果表明,所提算法在COCO数据集上的AP50指标达到61.3%,相较于无锚框网络CenterNet提升了4.2个百分点。所提算法在精度与时间的平衡上超越了原始算法,尤其适用于对工业场景的目标进行实时检测。  相似文献   

18.
贾林  李琦  梁栋 《信息与控制》2022,51(3):369-376
为解决桥梁裂缝检测时定位速度慢的问题,提出一种基于全卷积一阶(FCOS)检测器的裂缝定位改进算法。本算法采用FCOS网络模型,利用轻量级骨干网络Efficientnet提取裂缝图像特征,作为改进措施,引入加权双向特征金字塔网络(BiFPN)融合裂缝图像不同尺度的特征,从而进一步增强骨干网络的视觉特征提取效果。在自制数据...  相似文献   

19.
刘子威  邓春华  刘静 《计算机应用》2005,40(12):3526-3533
基于无锚框深度学习的目标检测是一种主流的单阶段目标检测算法。融合多层监督信息的沙漏网络结构能够显著提升无锚框目标检测算法的精度,然而其速度却远低于同层次的普通网络的速度,并且不同尺度目标间的特征会互相干扰。针对上述问题,提出了一种非对称沙漏网络结构的目标检测算法。该算法在融合不同网络层的特征时不受形状大小的约束,能够快速高效抽象出网络的语义信息,使模型更容易学习到各种尺度之间的差异。针对不同尺度目标检测问题,设计了一种多尺度输出的沙漏网络结构用来解决不同尺度目标间特征互相干扰的问题,并精细化输出的检测结果。另外,针对多尺度输出使用了一种特殊的非极大值抑制算法以提高检测算法的召回率。实验结果表明,所提算法在COCO数据集上的AP50指标达到61.3%,相较于无锚框网络CenterNet提升了4.2个百分点。所提算法在精度与时间的平衡上超越了原始算法,尤其适用于对工业场景的目标进行实时检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号