首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章针对高光谱波段数众多、信息冗余量大的特点,首先对高光谱曲线进行光谱特征参数提取,然后再选择合适的吸收峰波段作为输入向量,在VS2008平台上实现了采用贝叶斯树(NBTree)算法对铀矿床高光谱数据进行分类。  相似文献   

2.
光谱角匹配分类以光谱整体相似度作为分类准则,却无法充分考虑光谱的局部细节特征,导致高光谱遥感影像的分类结果存在着较大的误差.针对此问题,提出一种联合光谱角与组合特征参数(spectral angle mapping-combination characteristic parameter,SAM-CCP)的新型高光谱影...  相似文献   

3.
基于多地表特征参数的遥感影像分类研究   总被引:2,自引:0,他引:2  
地表特征是反映地表信息的重要参数,是了解地表时空多变信息的定量要素。提出基于多地表特征参数的遥感影像分类方法,并利用武汉市的Landsat ETM+影像为例进行试验。试验选择通用植被指数(VIUPD)、地表温度和纹理特征等多地表特征参数,在考虑光谱特征和空间信息的前提下,结合分层思想的决策树方法,对遥感影像进行分类。结果证明利用多地表特征参数的决策树分类方法与传统的基于光谱反射率特征的决策树分类方法和SVM分类方法相比较,分类精度有了明显的提高。  相似文献   

4.
基于决策树的高光谱遥感影像分类方法研究   总被引:1,自引:0,他引:1  
为了验证将决策树算法用于高光谱遥感影像分类的可行性,提出了一种二叉决策树自动构建算法用于高光谱遥感影像分类.通过对高光谱遥感影像进行现场采样、对样本进行统计和训练,生成了一棵二叉决策树,从决策树中提取出分类规则,并对高光谱遥感影像进行分类.生成的决策树简单明了,分类规则易于理解,分类效率和精度都比较高,实现了高光谱遥感影像从数据降维、样本选择、样本训练、决策树生成、影像分类的“一体化”和“自动化”.  相似文献   

5.
基于深度贝叶斯主动学习的高光谱图像分类   总被引:1,自引:0,他引:1  
针对高光谱图像分类中标记样本获取费时费力,无标记数据难以得到有效利用以及主动学习与深度学习结合难等问题,结合贝叶斯深度学习与主动学习的最新进展,提出一种基于深度贝叶斯的主动学习高光谱图像分类算法。利用少量标记样本训练一个卷积神经网络模型,根据与贝叶斯方法结合的主动学习采样策略从无标记样本中选择模型分类最不确定性的样本,选取的样本经人工标记后加入到训练集重新训练模型,减小模型不确定性,提高模型分类精度。通过PaviaU高光谱图像分类的实验结果表明,在少量的标记样本下,提出的方法比传统的方法分类效果更好。  相似文献   

6.
为解决高光谱遥感影像波段众多所带来的信息丰富与“维数灾难”间的矛盾并提高分类精度,针对传统特征选择方法信息损失大的缺陷,基于EO-1 Hyperion高光谱遥感影像,采用独立分量分析(ICA)和决策树分类(DTC)方法联合运作流程,开展影像的地物分类实验研究,提出了ICA-DTC模型。首先运用ICA方法对影像进行特征提取,并以所提取的独立分量特征及其他地理辅助要素组成分类指标集;继而选择适当的指标组合和阈值设定判别规则,建立DTC模型进行影像的地物分类;最后将分类结果与传统最大似然分类法进行比对。结果显示:从分类的总体精度看,前者可达89.34%,高出后者18.8%;从单一地物的分类精度看,前者仅水体的精度略低于后者,而其他11种地物的精度都高于后者。理论分析与实验结果均表明,ICA-DTC模型可有效提高复杂地形条件下的地物分类精度。  相似文献   

7.
吕金锐 《软件》2024,(4):104-106
面对大量用户的通信消费数据,如何对其进行挖掘从而获得有价值的信息,对客户进行分类,并制定不同的服务策略,是当前通信企业面临的一个普遍问题。本文介绍了几种常用的文本分类算法,通过分析用户的消费行为数据,选取了朴素贝叶斯分类预测算法、贝叶斯网络分类预测算法和决策树分类预测算法对用户进行分类,实验结果表明贝叶斯网络分类预测算法对于用户通信消费数据具有较好的分类效果。  相似文献   

8.
高光谱图像的有效压缩已经成为高光谱遥感领域研究的热点。提出了一种基于分类KLT( Karhunen-Loeve Transform)的高光谱图像压缩算法。该算法利用光谱信息对高光谱图像进行地物分类,根据相邻波段的相关性对高光谱图像进行波段分组。在地物分类与波段分组的基础上,对每组的每一类地物数据分别进行KL变换,利用EBCOT(Embedded Block Coding with Optimal Trtmcation)算法对所有主成分进行联合编码。实验结果表明,该算法能够取得优于JPEG2000以及DWT-JPEG2000的压缩性能,适合实现高光谱图像的有效压缩。  相似文献   

9.
混合树增广朴素贝叶斯分类模型   总被引:1,自引:0,他引:1  
树增广朴素贝叶斯分类算法(TANC)虽然降低了朴素贝叶斯分类算法(NBC)的条件独立性约束,但是该模型同时又要求每个条件属性结点(除树的根结点外)都有两个父结点,这种限制同样降低了分类的正确率.因此,提出了一种基于粗糙集理论的混合树增广朴素贝叶斯分类模型(MTANC).通过在UCI数据集上的仿真实验,验证了该方法的有效性.  相似文献   

10.
基于包络线消除的高光谱图像分类方法研究   总被引:5,自引:0,他引:5  
在高光谱遥感中,包络线消除法一般仅局限于对单个像元的光谱进行光谱分析,从中提取出有助于分类识别的特征波段。而该文则以包络线消除算法为基础,应用VC++语言编程实现了对整个高光谱图像文件去包络、归一化并且提取出分类的特征空间的功能,并且针对原图像文件和去包络线后的图像文件,比较了应用最大似然分类法和光谱角度匹配法进行分类的结果。  相似文献   

11.
针对朴素贝叶斯分类的属性独立性假设的不足,讨论了相关性及多变量相关的概念,给出词间相关度的定义。在TAN分类器的词间相关性分析基础上,提出一种文档特征词相关度估计公式及其在改进朴素贝叶斯分类模型中应用的算法,在Reuters-21578文本数据集上的实验表明,改进算法简单易行,能有效改进贝叶斯分类性能。  相似文献   

12.
为了改善树增强朴素贝叶斯(TAN)的分类精度,对TAN结构进行了扩展,提出了一种利用可分解的评分函数构建树形贝叶斯网络分类模型的学习方法。在构建TAN网络时允许属性没有父结点。采用低阶CI测试初步剔除无效属性,再结合改进的BIC评分函数利用贪婪搜索获得每个属性结点的父结点,从而建立分类模型。对比朴素贝叶斯(NB)和TAN,提出的分类算法在分类准确率和AUC面积两个指标上表现更好,说明本文模型拥有比TAN更好的分类效果。  相似文献   

13.
朴素贝叶斯分类器(NB)由于结构简单,计算高效而被广泛应用,但它不能充分利用属性间的依赖关系,有一定的局限性.因此,隐朴素贝叶斯分类器(HNB)通过为每个属性引入一个隐藏父节点,将各个属性之间的依赖关系都综合其中,使属性间的依赖关系得到了利用.但隐朴素贝叶斯分类器忽略了属性对与该属性的依赖关系,故在此基础上提出一种改进算法--双隐朴素贝叶斯算法(DHNB),使属性对与该属性的依赖关系得到了充分的利用,并提出一种新型的阈值定义法,使得选取的阈值让分类精度与时间复杂度的比值为最大,缓解了算法时间复杂度和分类精度之间的矛盾.然后将改进的算法在UCI数据集上进行仿真试验,结果表明其分类性能优于HNB和NB,该方法具有较好的适用性.  相似文献   

14.
    
Web page classification has become a challenging task due to the exponential growth of the World Wide Web. Uniform Resource Locator (URL)‐based web page classification systems play an important role, but high accuracy may not be achievable as URL contains minimal information. Nevertheless, URL‐based classifiers along with rejection framework can be used as a first‐level filter in a multistage classifier, and a costlier feature extraction from contents may be done in later stages. However, noisy and irrelevant features present in URL demand feature selection methods for URL classification. Therefore, we propose a supervised feature selection method by which relevant URL features are identified using statistical methods. We propose a new feature weighting method for a Naive Bayes classifier by embedding the term goodness obtained from the feature selection method. We also propose a rejection framework to the Naive Bayes classifier by using posterior probability for determining the confidence score. The proposed method is evaluated on the Open Directory Project and WebKB data sets. Experimental results show that our method can be an effective first‐level filter. McNemar tests confirm that our approach significantly improves the performance.  相似文献   

15.
It is known that latent semantic indexing (LSI) takes advantage of implicit higher-order (or latent) structure in the association of terms and documents. Higher-order relations in LSI capture "latent semantics". These findings have inspired a novel Bayesian framework for classification named Higher-Order Naive Bayes (HONB), which was introduced previously, that can explicitly make use of these higher-order relations. In this paper, we present a novel semantic smoothing method named Higher-Order Smoothing (HOS) for the Naive Bayes algorithm. HOS is built on a similar graph based data representation of the HONB which allows semantics in higher-order paths to be exploited. We take the concept one step further in HOS and exploit the relationships between instances of different classes. As a result, we move beyond not only instance boundaries, but also class boundaries to exploit the latent information in higher-order paths. This approach improves the parameter estimation when dealing with insufficient labeled data. Results of our extensive experiments demonstrate the value of HOS oi1 several benchmark datasets.  相似文献   

16.
潘志方 《计算机科学》2007,34(6):214-215
随着电子商务的不断发展,用户的分析和分类对电子商务网站来说越来越重要。因此需要一个行之有效的方法来进行用户分类并对其进行个性化服务。在本文中,我们提出了一种可以根据用户的网页访问记录和网上交易记录来动态地对顾客进行分类的方法,主要是利用了改进型的朴素贝叶斯分类器,对用户在网站上的行为进行分类,从而得到用户的分类信息,其结果可以作为提供个性化服务的依据。文章通过实验证明了上述方法的有效性和正确性。  相似文献   

17.
提出并实现了一个基于贝叶斯的冬态树木自动分类的系统.通过分析树木体系的特征,研究并分析了可能影响树木分类结果的几个方面,提出了树木分类建模时应该考虑的因素,并将其归纳为六个方面,从中抽取与分类最相关的内容和信息,构建了冬态树木分类的模型,最后用贝叶斯方法实现了该分类模型,完成了基于贝叶斯的冬态树木分类系统.系统实现了树木分类中各特征项参数的自学习功能,以便在使用分类过程中,根据实际情况,自学习参数,达到最佳的分类效果.实验结果表明所提出的分类方法可以较好地解决冬态树木的自动分类问题.  相似文献   

18.
局部加权朴素贝叶斯(LWNB)是朴素贝叶斯(NB)的一种较好的改进,判别频率估计(DFE)可以极大地提高NB的泛化正确率。受LWNB和DFE启发,提出逐渐缩小空间(GCS)算法用来学习NB参数:对于一个测试实例,寻找包含全体训练实例的全局空间的一系列逐渐缩小的子空间。这些子空间具有两种性质:1)它们都包含测试实例;2)一个空间一定包含在任何一个比它大的空间中。在逐渐缩小的空间上使用修改的DFE(MDFE)算法渐进地学习NB的参数,然后使用NB分类测试实例。与LWNB的根本不同是:GCS使用全体训练实例学习NB并且GCS可以实现为非懒惰版本。实现了GCS的决策树版本(GCS-T),实验结果显示,与C4.5以及贝叶斯分类算法(如Naive Bayes、BaysianNet、NBTree、LWNB、隐朴素贝叶斯)相比,GCS-T具有较高的泛化正确率,并且GCS-T的分类速度明显快于LWNB。  相似文献   

19.
基于贝叶斯分类器的移动机器人避障   总被引:2,自引:1,他引:2  
李仪  蔡自兴 《控制工程》2004,11(4):332-334,359
贝叶斯分类是一种基于贝叶斯定理的统计学分类方法,它是结合先验信息与样本信息计算出后验概率。介绍了一种基于贝叶斯分类的移动机器人避障方法。对摄像头所获得的图像进行图像分割以抽取图像的障碍物边缘信息,根据所得到的障碍物轮廓对其左右边界进行标定。叙述了朴素贝叶斯分类器在先验概率未知情况下的工作过程。基于朴素贝叶斯分类器对未知类标号的样本进行分类,从而得到机器人移动的控制指令。实验结果表明了该方法的有效性和可行性。  相似文献   

20.
朴素贝叶斯分类中的隐私保护方法研究   总被引:3,自引:0,他引:3  
张鹏  唐世渭 《计算机学报》2007,30(8):1267-1276
数据挖掘中的隐私保护方法,试图在不精确访问原始数据详细信息的条件下,挖掘出准确的模式与规则.围绕着分类挖掘中的隐私保护问题展开研究,给出了一种基于数据处理和特征重构的朴素贝叶斯分类中的隐私保护方法.分别提出了一种针对枚举类型的隐私数据处理与特征重构方法--扩展的部分隐藏随机化回答(Extended Randomized Response with Partial Hiding,ERRPH)方法和一种针对数值类型的隐私数据处理与特征重构方法--转换的随机化回答(Transforming Randomized Response,TRR)方法,并在此基础上实现了一个完整的隐私保护的朴素贝叶斯分类算法.理论分析和实验结果均表明:朴素贝叶斯分类中基于ERRPH和TRR的隐私保护方法具有很好的隐私性、准确性、高效性和适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号