首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Over the past few years researchers have been investigating the enhancement of visual tracking performance by devising trackers that simultaneously make use of several different features. In this paper we investigate the combination of synchronous visual trackers that use different features while treating the trackers as “black boxes”. That is, instead of fusing the usage of the different types of data as has been performed in previous work, the combination here is allowed to use only the trackers' output estimates, which may be modified before their propagation to the next time step. We propose a probabilistic framework for combining multiple synchronous trackers, where each separate tracker outputs a probability density function of the tracked state, sequentially for each image. The trackers may output either an explicit probability density function, or a sample-set of it via Condensation. Unlike previous tracker combinations, the proposed framework is fairly general and allows the combination of any set of trackers of this kind, even in different state-spaces of different dimensionality, under a few reasonable assumptions. The combination may consist of different trackers that track a common object, as well as trackers that track separate, albeit related objects, thus improving the tracking performance of each object. The benefits of merely using the final estimates of the separate trackers in the combination are twofold. Firstly, the framework for the combination is fairly general and may be easily used from the software aspects. Secondly, the combination may be performed in a distributed setting, where each separate tracker runs on a different site and uses different data, while avoiding the need to share the data. The suggested framework was successfully tested using various state-spaces and datasets, demonstrating that fusing the trackers' final distribution estimates may indeed be applicable. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. First online version published in October, 2005  相似文献   

2.
In recent visual tracking research, correlation filter (CF) based trackers become popular because of their high speed and considerable accuracy. Previous methods mainly work on the extension of features and the solution of the boundary effect to learn a better correlation filter. However, the related studies are insufficient. By exploring the potential of trackers in these two aspects, a novel adaptive padding correlation filter (APCF) with feature group fusion is proposed for robust visual tracking in this paper based on the popular context-aware tracking framework. In the tracker, three feature groups are fused by use of the weighted sum of the normalized response maps, to alleviate the risk of drift caused by the extreme change of single feature. Moreover, to improve the adaptive ability of padding for the filter training of different object shapes, the best padding is selected from the preset pool according to tracking precision over the whole video, where tracking precision is predicted according to the prediction model trained by use of the sequence features of the first several frames. The sequence features include three traditional features and eight newly constructed features. Extensive experiments demonstrate that the proposed tracker is superior to most state-of-the-art correlation filter based trackers and has a stable improvement compared to the basic trackers.   相似文献   

3.
目前,在视觉目标跟踪任务中的主流方法是基于模版匹配的跟踪器,这些方法在目标的分类和边界框的回归上具有很强的鲁棒性,主要可以分为判别相关滤波跟踪器和孪生网络跟踪器,这两种方法都有一个类孪生网络的框架。以孪生网络跟踪器为例,该方法通过模版和搜索区域之间的相关操作确定目标的位置,取得了顶尖的性能表现。近年来,Transformer在计算机视觉领域的发展十分迅速,结合了Transformer的类孪生网络跟踪器在速度和精度方面都远超传统的跟踪方法。文章简要概括了判别相关滤波跟踪器、孪生网络跟踪器的发展,以及Transformer在目标跟踪任务中的应用。  相似文献   

4.
This article presents a visual object tracking method and applies an event-based performance evaluation metric for assessment. The proposed monocular object tracker is able to detect and track multiple object classes in non-controlled environments. The tracking framework uses Bayesian per-pixel classification to segment an image into foreground and background objects, based on observations of object appearances and motions in real-time. Furthermore, a performance evaluation method is presented and applied to different state-of-the-art trackers based on successful detections of semantically high level events. These events are extracted automatically from the different trackers an their varying types of low level tracking results. Then, a general new event metric is used to compare our tracking method with the other tracking methods against ground truth of multiple public datasets.  相似文献   

5.
Eye gaze tracking is very useful for quantitatively measuring visual attention in virtual environments. However, most eye trackers have a limited tracking range, e.g., ±35° in the horizontal direction. This paper proposed a method to combine head pose tracking and eye gaze tracking together to achieve a large range of tracking in virtual driving simulation environments. Multiple parallel multilayer perceptrons were used to reconstruct the relationship between head images and head poses. Head images were represented with the coefficients extracted from Principal Component Analysis. Eye gaze tracking provides precise results on the front view, while head pose tracking is more suitable for tracking areas of interest than for tracking points of interest on the side view.  相似文献   

6.
In this paper, we propose a novel visual tracking algorithm using the collaboration of generative and discriminative trackers under the particle filter framework. Each particle denotes a single task, and we encode all the tasks simultaneously in a structured multi-task learning manner. Then, we implement generative and discriminative trackers, respectively. The discriminative tracker considers the overall information of object to represent the object appearance; while the generative tracker takes the local information of object into account for handling partial occlusions. Therefore, two models are complementary during the tracking. Furthermore, we design an effective dictionary updating mechanism. The dictionary is composed of fixed and variational parts. The variational parts are progressively updated using Metropolis–Hastings strategy. Experiments on different challenging video sequences demonstrate that the proposed tracker performs favorably against several state-of-the-art trackers.  相似文献   

7.
8.
During the last decade, the development of the immersive virtual reality (VR) has achieved a great progress in different application areas. For more advanced large-scale immersive VR environments or systems, one of the most challenge is to accurately track the position of the user’s body part such as head when he/she is immersived in the environment to feel the changes among the synthetic stereoscopic image sequences. Unfortunately, accurate tracking is not easy in the virtual reality scenarios due to the variety types of existing intrinsic and extrinsic changes when tracking is on-the-fly. Especially for the single tracker, a long time accurate tracking is usually not possible because of the model adaption problem in different environments. Recent trend of research in tracking is to incorporate multiple trackers into a compositive learning framework and utilize the advantages of different trackers for more effective tracking. Therefore, in this paper, we propose a novel Bayesian tracking fusion framework with online classifier ensemble strategy. The proposed tracking formulates a fusion framework for online learning of multiple trackers by modeling a cumulative loss minimization process. With an optimal pair-wise sampling scheme for the SVM classifier, the proposed fusion framework can achieve more accurate tracking performance when compared with the other state-of-art trackers. In addition, the experiments on the standard benchmark database also verify that the proposed tracking is able to handle the challenges in many immersive VR applications and environments.  相似文献   

9.
This paper presents a novel online object tracking algorithm with sparse representation for learning effective appearance models under a particle filtering framework. Compared with the state-of-the-art ? 1 sparse tracker, which simply assumes that the image pixels are corrupted by independent Gaussian noise, our proposed method is based on information theoretical Learning and is much less sensitive to corruptions; it achieves this by assigning small weights to occluded pixels and outliers. The most appealing aspect of this approach is that it can yield robust estimations without using the trivial templates adopted by the previous sparse tracker. By using a weighted linear least squares with non-negativity constraints at each iteration, a sparse representation of the target candidate is learned; to further improve the tracking performance, target templates are dynamically updated to capture appearance changes. In our template update mechanism, the similarity between the templates and the target candidates is measured by the earth movers’ distance(EMD). Using the largest open benchmark for visual tracking, we empirically compare two ensemble methods constructed from six state-of-the-art trackers, against the individual trackers. The proposed tracking algorithm runs in real-time, and using challenging sequences performs favorably in terms of efficiency, accuracy and robustness against state-of-the-art algorithms.  相似文献   

10.
Visual tracking is an important task in various computer vision applications including visual surveillance, human computer interaction, event detection, video indexing and retrieval. Recent state of the art sparse representation (SR) based trackers show better robustness than many of the other existing trackers. One of the issues with these SR trackers is low execution speed. The particle filter framework is one of the major aspects responsible for slow execution, and is common to most of the existing SR trackers. In this paper,1 we propose a robust interest point based tracker in l1 minimization framework that runs at real-time with performance comparable to the state of the art trackers. In the proposed tracker, the target dictionary is obtained from the patches around target interest points. Next, the interest points from the candidate window of the current frame are obtained. The correspondence between target and candidate points is obtained via solving the proposed l1 minimization problem.In order to prune the noisy matches, a robust matching criterion is proposed, where only the reliable candidate points that mutually match with target and candidate dictionary elements are considered for tracking. The object is localized by measuring the displacement of these interest points. The reliable candidate patches are used for updating the target dictionary. The performance and accuracy of the proposed tracker is benchmarked with several complex video sequences. The tracker is found to be considerably fast as compared to the reported state of the art trackers. The proposed tracker is further evaluated for various local patch sizes, number of interest points and regularization parameters. The performance of the tracker for various challenges including illumination change, occlusion, and background clutter has been quantified with a benchmark dataset containing 50 videos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号