首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
A C++ language-based software tool for retrieving land surface temperature (LST) from the data of Landsat TM/ETM+ band6 is developed. It has two main functional modules: (1) Three methods to compute the ground emissivity based on land use/cover classification image, NDVI image and the ratio values of vegetation and bare ground and (2) Converting digital numbers (DNs) from TM/ETM+ band6 to LST. In the software tool, Qin et al.'s mono-window algorithm and Jiménez-Muňoz and Sobrino's single channel algorithm are programmed to retrieve LST. It will be a useful software tool to study the thermal environment of ground surface or the energy balance between the ground and the bottom atmosphere by using the thermal band of Landsat TM/ETM+.  相似文献   

2.
利用TM6数据反演陆地表面温度新算法研究   总被引:16,自引:1,他引:16  
陆地表面温度(LST)反演一直是热红外遥感研究中的一大难题。虽然TM 6数据具有较高的空间分辨率(120 m),但由于只有一个热通道,要得到地表真实温度,原来需要利用辐射传输方程的方法,实时资料的缺乏限制了该方法的应用。因而由TM 6数据得到的通常都是星上亮度温度,而星上亮度温度与实际地表温度差距较大,因此,其反演的温度精度不高。而单窗算法和普适性单通道算法的提出为从TM 6数据较高精度地反演陆地表面温度提供了可能。分析和研究了这两个新的单通道温度反演算法,并针对北京市的实际情况,利用2005年5月6日的TM数据对北京市的陆地表面温度进行了反演,并用实地测量数据进行了比较验证。结果表明这两种温度反演算法都取得了较高的精度,它们的rm sd值分别为1.38°和2.18°。  相似文献   

3.
This paper presents a practical split‐window algorithm utilized to retrieve land‐surface temperature (LST) from Moderate‐resolution Imaging Spectroradiometer (MODIS) data, which involves two essential parameters (transmittance and emissivity), and a new method to simplify Planck function has been proposed. The method for linearization of Planck function, how to obtain atmosphere transmittance from MODIS near‐infrared (NIR) bands and the method for estimating of emissivity of ground are discussed with details. Sensitivity analysis of the algorithm has been performed for the evaluation of probable LST estimation error due to the possible errors in water content and emissivity. Analysis indicates that the algorithm is not sensitive to these two parameters. Especially, the average LST error is changed between 0.19–1.1°C when the water content error in the simulation standard atmosphere changes between ?80 and 130%. We confirm the conclusion by retrieving LST from MODIS image data through changing retrieval water content error. Two methods have been used to validate the proposed algorithm. Results from validation and comparison using the standard atmospheric simulation and the comparison with the MODIS LST product demonstrate the applicability of the algorithm. Validation with standard atmospheric simulation indicates that this algorithm can achieve the average accuracy of this algorithm is about 0.32°C in LST retrieval for the case without error in both transmittance and emissivity estimations. The accuracy of this algorithm is about 0.37°C and 0.49°C respectively when the transmittance is computed from the simulation water content by exponent fit and linear fit respectively.  相似文献   

4.
基于Landsat TM图像的北京城市地表温度遥感反演研究   总被引:20,自引:0,他引:20  
利用北京地区Landsat TM热红外波段数据,采用单通道算法反演得到北京地区地面温度分布图。从反演结果可以看出,北京城区地面温度比郊区地表温度高,郊区地表温度较低,密云水库、官厅水库等水体的温度最低,总体上北京城市热岛效应显著。地表比辐射率是通过Van经验公式反演得到,通过对比分析,表明该方法对自然地表的比辐射率反演效果较好。  相似文献   

5.
针对MODIS 数据的地表温度非线性迭代反演方法   总被引:1,自引:0,他引:1       下载免费PDF全文
地表温度是气象、水文、生态等研究领域中的一个重要参数。构建了MODIS31/ 32 波段的热辐射传输方程, 讨论了方程的数值迭代解法, 提出了针对MODIS 数据地表温度的非线性迭代反演方法, 并介绍了大气透过率和地表比辐射率这两个中间参数的估计方法。误差及敏感性分析表明,提出的方法对大气透过率和地表比辐射率都不敏感, 反演精度优于传统的线性分裂窗算法。  相似文献   

6.
Land surface temperature (LST) is a key parameter in the physics of land surface processes on regional and global scales. Although there are MODIS and Landsat land surface reflectance products, there is no LST product for Landsat data due in part to many challenges in the development of an operational Landsat LST product generating system because Landsat possesses only one thermal infrared channel. The aim of this article is to describe the Landsat LST product generation project launched by the Centre for Earth Observation and Digital Earth (CEODE), Chinese Academy of Sciences. The generalized single-channel (SC) algorithm proposed by Jiménez-Muñoz et al. is used for LST retrieval. It is fully operational, requires minimal input data requirements, and has acceptable precision. Total atmospheric water vapour content is the key input parameter required by the SC algorithm. In this project, the MODIS water vapour product is employed to derive total atmospheric water vapour content. In this way, an operational Landsat LST product generation program was constructed by integration of MODIS and Landsat satellite imagery.  相似文献   

7.
Classification-based global emissivity is needed for the National Aeronautics and Space Administration Earth Observing System Moderate Resolution Imaging Spectrometer (NASA EOS/MODIS) satellite instrument land surface temperature (LST) algorithm. It is also useful for Landsat, the Advanced Very High Resolution Radiometer (AVHRR) and other thermal infrared instruments and studies. For our approach, a pixel is classified as one of fourteen 'emissivity classes' based on the conventional land cover classification and dynamic and seasonal factors, such as snow cover and vegetation index. The emissivity models we present provide a range of values for each emissivity class by combining various spectral component measurements with structural factors. Emissivity statistics are reported for the EOS/MODIS channels 31 and 32, which are the channels that will be used in the LST split-window algorithm.  相似文献   

8.
Thermal infrared data of the Digital Airborne Imaging Spectrometer (DAIS), whose channels 74-79 are in the 8-13 w m waveband region, were analysed with the aim of recovering land surface temperature (LST). DAIS images were acquired over an experimental site where field and laboratory emissivity measurements were performed, and these were used to recover the LST from the six DAIS thermal channels. Atmospheric correction of DAIS data was calculated by means of a nearby radiosounding and a radiative transfer model. DAIS derived LSTs were compared with ground measurements of LST made coincidentally for a few test fields, the central DAIS channels yielding temperatures up to 10°C higher than ground measurements. A linear calibration was performed using in situ measurements of temperature and emissivity for two reference fields, and the large differences in temperature were then considerably reduced. Temperatures obtained from DAIS channel 79 agreed with the in situ measurements within - 2°C. This channel seemed the most reliable for deriving accurate LSTs in the dataset analysed here.  相似文献   

9.
以黑河流域上游和中游为研究区,针对MTSAT-1R卫星数据,运用MODTRAN 4.0及晴空状态下的TIGR大气廓线数据,发展了根据地表比辐射率、大气水汽含量、传感器观测角度分组模拟的分裂窗算法,进行地表温度反演。分析了传感器噪声、地表比辐射率和大气水汽含量3个参数对该算法的影响,并结合模拟数据、地面观测数据及MODIS地表温度产品,对反演结果进行分析评价。结果表明:当传感器垂直观测或大气水汽含量小于2.5g/cm2时,反演精度在1K以内;反演结果与地面观测数据对比差异较小,在阿柔站RMSE为3.7 K(日)/1.4 K(夜),在盈科站RMSE为2.4K(日)/2.0K(夜);与MODIS地表温度产品比较,空间分布呈现出一致性。总之,分组分裂窗算法能较好地用于MTSAT-1R卫星数据进行地表温度反演。  相似文献   

10.
The accuracy of a radiance transfer model neural network (RM-NN) for separating land surface temperature (LST) and emissivity from AST09 (the Advanced Spaceborne and Thermal Emission and Reflection Radiometer (ASTER) Standard Data Product, surface leaving radiance) is very high, but it is limited by the accuracy of the atmospheric correction. This article uses a neural network and radiance transfer model (MODTRAN4) to directly retrieve the LST and emissivity from ASTER1B data, which overcomes the difficulty of atmospheric correction in previous methods. The retrieval average accuracy of LST is about 1.1 K, and the average accuracy of emissivity in bands 11–14 is under 0.016 for simulated data when the input nodes are a combination of brightness temperature in bands 11–14. The average accuracy of LST is under 0.8 K when the input nodes are a combination of water vapour content and brightness temperature in bands 11–14. Finally, the comparison of retrieval results with ground measurement data indicates that the RM-NN can be used to accurately retrieve LST and emissivity from ASTER1B data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号