共查询到20条相似文献,搜索用时 62 毫秒
1.
光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)方法是一种新近发展的可用于流体模拟的无网格数值方法。文中基于SPH方法的基本原理,利用SPH方法求解描述水流现象的二维浅水波方程,根据具体模型使用Mon-aghan人工粘性的变形形式,有效地防止了相互靠近粒子的穿透,消除了SPH方法在模拟流体动力学问题时产生的数值振荡。通过使用可变光滑长度,使邻近粒子的数量保持相对稳定,提高了求解的计算效率和精度。同时,对光滑长度进行了修正以获取对称光滑长度,保持了粒子间相互作用对称性。全面考虑了各种定解条件的设置,对水滴的运动进行了模拟,SPH模拟结果与有限差分法、有限体积法结果非常吻合,验证了方法的准确性,为SPH方法的进一步发展和广泛运用奠定了基础。 相似文献
2.
光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)方法是一种新近发展的可用于流体模拟的无网格数值方法.文中基于SPH方法的基本原理,利用SPH方法求解描述水流现象的二维浅水波方程,根据具体模型使用Monaghan人工粘性的变形形式,有效地防止了相互靠近粒子的穿透,消除了SPH方法在模拟流体动力学问题时产生的数值振荡.通过使用可变光滑长度,使邻近粒子的数量保持相对稳定,提高了求解的计算效率和精度.同时,对光滑长度进行了修正以获取对称光滑长度,保持了粒子间相互作用对称性.全面考虑了各种定解条件的设置,对水滴的运动进行了模拟,SPH模拟结果与有限差分法、有限体积法结果非常吻合,验证了方法的准确性,为SPH方法的进一步发展和广泛运用奠定了基础. 相似文献
3.
计算机动画技术正在以一种新兴产业的形式展现在人们面前。本文从关键帧动画、变形体动画、过程动画、关节动画和人体动画、基于物理的动画等五个方面对迄今为止的计算机动画技术进行了描述。 相似文献
4.
5.
计算机人脸表情动画技术综述* 总被引:1,自引:0,他引:1
真实感的计算机人脸表情动画是计算机图形学领域最基本的问题之一。由于其具有广阔的应用前景,引起了越来越多的研究者的关注与极大的兴趣。针对近几十年来该领域的发展状况,对计算机人脸表情动画技术进行综述。通过将人脸表情动画技术分为基于几何学的方法和基于图像的方法,详细阐述并比较了相关的研究成果,分析和讨论了它们的优缺点,并对人脸表情动画技术的未来发展进行了展望。 相似文献
6.
近年来,自然景物的模拟一直是计算机图形学中最具挑战性的问题之一。关于山、水、云、烟、火焰等自然景物的模拟,在计算机游戏、影视、广告等各种领域中有着广泛的用途。作为自然景物模拟的重要内容,对流水、波浪的模拟正日益引起人们的关注。本文基于二维浅水波方程模型,给出了一种实现水波动画的数值模拟方法。和以往的方法不同的是,本文既没有去特意构造具体的波形函数,也没有去求解复杂的Navier-Stokes方程,而是基于二维浅水波方程模型,采用隐式半拉格朗日积分方法进行求解,在保证稳定性的同时,可以允许大时间步长。实践证明,用该算法模拟水波,效果比较真实,而且在普通的PC平台上即可满足一般动画的实时需求。 相似文献
7.
8.
一种高效的计算机动画方法 总被引:1,自引:0,他引:1
文章提出了一种高效的产生计算机动画的方法,在实际工程中具有广泛的应用前景。并且,利用面向对象的分析、设计和实现思想,封装了一个类,以完成位图文件的加载、基于象素的图象透明绘制以及旋转变换等常用功能。 相似文献
9.
在三维计算机动画中,把人体作为其中的角色一直是研究者感兴趣的目标,因而关节动画越来越成为人们致力解决的研究课题。在这一方面引人注目的早期工作从动画电影《TonydePeltrie》和《RendezvousaMontreal》可见一斑,而近期在这一方面的工作更是令人惊叹不已,如电影《终结者Ⅱ》、《保罗纪公园》。虽然计算机动画在广告、娱乐、教育、科学计算可视化和仿真等领域占据越来越重要的角色,人体和动物动画的许多问题仍未很好解决。人体具有200个以上的自由度和非常复杂的运动,人的形状不规则,人的肌肉随着人体的运动而变形,人的个性、… 相似文献
10.
提出一个可用于计算机动画中以自然为背景生成的表现风吹树动的模型,该模型将矢量合成处理结合到三维树木的递归生成过程中,能简便地得到有较好效果的动画系列画面。 相似文献
11.
The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions. We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour. 相似文献
12.
In physics-based liquid simulation for graphics applications, pressure projection consumes a significant amount of computational time and is frequently the bottleneck of the computational efficiency. How to rapidly apply the pressure projection and at the same time how to accurately capture the liquid geometry are always among the most popular topics in the current research trend in liquid simulations. In this paper, we incorporate an artificial neural network into the simulation pipeline for handling the tricky projection step for liquid animation. Compared with the previous neural-network-based works for gas flows, this paper advocates new advances in the composition of representative features as well as the loss functions in order to facilitate fluid simulation with free-surface boundary. Specifically, we choose both the velocity and the level-set function as the additional representation of the fluid states, which allows not only the motion but also the boundary position to be considered in the neural network solver. Meanwhile, we use the divergence error in the loss function to further emulate the lifelike behaviours of liquid. With these arrangements, our method could greatly accelerate the pressure projection step in liquid simulation, while maintaining fairly convincing visual results. Additionally, our neutral network performs well when being applied to new scene synthesis even with varied boundaries or scales. 相似文献
13.
Sinuo Liu Xiaokun Wang Xiaojuan Ban Yanrui Xu Jing Zhou Jií Kosinka Alexandru C. Telea 《Computer Graphics Forum》2021,40(1):54-67
A major issue in smoothed particle hydrodynamics (SPH) approaches is the numerical dissipation during the projection process, especially under coarse discretizations. High‐frequency details, such as turbulence and vortices, are smoothed out, leading to unrealistic results. To address this issue, we introduce a vorticity refinement (VR) solver for SPH fluids with negligible computational overhead. In this method, the numerical dissipation of the vorticity field is recovered by the difference between the theoretical and the actual vorticity, so as to enhance turbulence details. Instead of solving the Biot‐Savart integrals, a stream function, which is easier and more efficient to solve, is used to relate the vorticity field to the velocity field. We obtain turbulence effects of different intensity levels by changing an adjustable parameter. Since the vorticity field is enhanced according to the curl field, our method can not only amplify existing vortices, but also capture additional turbulence. Our VR solver is straightforward to implement and can be easily integrated into existing SPH methods. 相似文献
14.
Fracture produces new mesh fragments that introduce additional degrees of freedom in the system dynamics. Existing finite element method (FEM) based solutions suffer from increasing computational cost as the system matrix size increases. We solve this problem by presenting a graph-based FEM model for fracture simulation that is remeshing-free and easily scales to high-resolution meshes. Our algorithm models fracture on the graph induced in a volumetric mesh with tetrahedral elements. We relabel the edges of the graph using a computed damage variable to initialize and propagate fracture. We prove that non-linear, hyper-elastic strain energy density is expressible entirely in terms of the edge lengths of the induced graph. This allows us to reformulate the system dynamics for the relabelled graph without changing the size of the system dynamics matrix and thus prevents the computational cost from blowing up. The fractured surface has to be reconstructed explicitly only for visualization purposes. We simulate standard laboratory experiments from structural mechanics and compare the results with corresponding real-world experiments. We fracture objects made of a variety of brittle and ductile materials, and show that our technique offers stability and speed that is unmatched in current literature. 相似文献
15.
Hoseok Ryu Minseok Kim Seungwhan Lee Moon Seok Park Kyoungmin Lee Jehee Lee 《Computer Graphics Forum》2021,40(1):341-356
We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset and edited further for individual models. The retargeted model is simulation‐ready, so we can physically simulate muscle‐actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of individualized musculoskeletal models from bi‐planar X‐ray images and medical examination. 相似文献
16.
A physically-based model is presented for the simulation of a new type of deformable objects-inflatable objects, such as shaped balloons, which consist of pressurized air enclosed by an elastic surface. These objects have properties inherent in both 3D and 2D elastic bodies, as they demonstrate the behaviour of 3D shapes using 2D formulations. As there is no internal structure in them, their behaviour is substantially different from the behaviour of deformable solid objects. We use one of the few available models for deformable surfaces, and enhance it to include the forces of internal and external pressure. These pressure forces may also incorporate buoyancy forces, to allow objects filled with a low density gas to float in denser media. The obtained models demonstrate rich dynamic behaviour, such as bouncing, floating, deflation and inflation. 相似文献
17.
We propose to use nonlinear shape functions represented as neural networks in numerical coarsening to achieve generalization capability as well as good accuracy. To overcome the challenge of generalization to different simulation scenarios, especially nonlinear materials under large deformations, our key idea is to replace the linear mapping between coarse and fine meshes adopted in previous works with a nonlinear one represented by neural networks. However, directly applying an end-to-end neural representation leads to poor performance due to over-huge parameter space as well as failing to capture some intrinsic geometry properties of shape functions. Our solution is to embed geometry constraints as the prior knowledge in learning, which greatly improves training efficiency and inference robustness. With the trained neural shape functions, we can easily adopt numerical coarsening in the simulation of various hyperelastic models without any other preprocessing step required. The experiment results demonstrate the efficiency and generalization capability of our method over previous works. 相似文献
18.
We present a method for the rapid and controllable simulation of the shattering of brittle objects under impact. An object is represented as a set of point masses connected by distance-preserving linear constraints. This use of constraints, rather than stiff springs, gains us a significant advantage in speed while still retaining fine control over the fracturing behavior. The forces exerted by these constraints during impact are computed using Lagrange multipliers. These constraint forces are then used to determine when and where the object will break, and to calculate the velocities of the newly created fragments. We present the details of our technique together with examples illustrating its use.
An earlier version of this paper was presented at Graphics Interface 2000, held in Montreal, Canada. 相似文献
An earlier version of this paper was presented at Graphics Interface 2000, held in Montreal, Canada. 相似文献
19.
Inspired by frictional behaviour that is observed when sliding matchsticks against one another at different angles, we propose a phenomenological anisotropic friction model for structured surfaces. Our model interpolates isotropic and anisotropic elliptical Coulomb friction parameters for a pair of surfaces with perpendicular and parallel structure directions (e.g. the wood grain direction). We view our model as a special case of an abstract friction model that produces a cone based on state information, specifically the relationship between structure directions. We show how our model can be integrated into LCP and NCP-based simulators using different solvers with both explicit and fully implicit time-integration. The focus of our work is on symmetric friction cones, and we therefore demonstrate a variety of simulation scenarios where the friction structure directions play an important part in the resulting motions. Consequently, authoring of friction using our model is intuitive and we demonstrate that our model is compatible with standard authoring practices, such as texture mapping. 相似文献
20.
We propose a novel monolithic pure SPH formulation to simulate fluids strongly coupled with rigid bodies. This includes fluid incompressibility, fluid–rigid interface handling and rigid–rigid contact handling with a viable implicit particle-based dry friction formulation. The resulting global system is solved using a new accelerated solver implementation that outperforms existing fluid and coupled rigid–fluid simulation approaches. We compare results of our simulation method to analytical solutions, show performance evaluations of our solver and present a variety of new and challenging simulation scenarios. 相似文献