首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Multimodal biometrics technology consolidates information obtained from multiple sources at sensor level, feature level, match score level, and decision level. It is used to increase robustness and provide broader population coverage for inclusion. Due to the inherent challenges involved with feature-level fusion, combining multiple evidences is attempted at score, rank, or decision level where only a minimal amount of information is preserved. In this paper, we propose the Group Sparse Representation based Classifier (GSRC) which removes the requirement for a separate feature-level fusion mechanism and integrates multi-feature representation seamlessly into classification. The performance of the proposed algorithm is evaluated on two multimodal biometric datasets. Experimental results indicate that the proposed classifier succeeds in efficiently utilizing a multi-feature representation of input data to perform accurate biometric recognition.  相似文献   

2.
To preserve the sparsity structure in dimensionality reduction, sparsity preserving projection (SPP) is widely used in many fields of classification, which has the advantages of noise robustness and data adaptivity compared with other graph based method. However, the sparsity parameter of SPP is fixed for all samples without any adjustment. In this paper, an improved SPP method is proposed, which has an adaptive parameter adjustment strategy during sparse graph construction. With this adjustment strategy, the sparsity parameter of each sample is adjusted adaptively according to the relationship of those samples with nonzero sparse representation coefficients, by which the discriminant information of graph is enhanced. With the same expectation, similarity information both in original space and projection space is applied for sparse representation as guidance information. Besides, a new measurement is introduced to control the influence of each sample’s local structure on projection learning, by which more correct discriminant information should be preserved in the projection space. With the contributions of above strategies, the low-dimensional space with high discriminant ability is found, which is more beneficial for classification. Experimental results on three datasets demonstrate that the proposed approach can achieve better classification performance over some available state-of-the-art approaches.  相似文献   

3.
董丽梦  李锵  关欣 《计算机工程与应用》2012,48(29):133-136,219
和弦识别作为音乐信息标注的基础,在分析音乐结构和旋律方面具有非常重要的作用.结合音乐理论知识,提出一种基于稀疏表示分类器的和弦识别方法.与传统的基于帧的识别方法不同,以节拍作为和弦变化的最小时间间隔,利用CQT (Constant-Q Transform)变换对音乐信号进行时频分析,提取PCP (Pitch Class Profile)特征,采用稀疏表示分类器(Sparse Representation-based Classification,SRC)进行和弦识别.实验结果表明,提出的特征和识别方法在识别率上均高于传统的方法.  相似文献   

4.
提出了一种基于多特征字典的稀疏表示算法。该算法针对SRC的单特征鉴别性较弱这一不足,对样本提出多个不同特征并分别进行相应的稀疏表示。并根据SRC算法计算各个特征的鉴别性,自适应地学习出稀疏权重并进行线性加权,从而提高分类的性能。实验表明,基于自适应权重的多重稀疏表示分类算法,具有更好的分类效果。  相似文献   

5.
6.
Recent research of sparse signal representation has aimed at learning discriminative sparse models instead of purely reconstructive ones for classification tasks, such as sparse representation based classification (SRC) which obtains state-of-the-art results in face recognition. In this paper, a new method is proposed in that direction. With the assumption of locally linear embedding, the proposed method achieves the classification goal via sparse neighbor representation, combining the reconstruction property, sparsity and discrimination power. The experiments on several data sets are performed and results show that the proposed method is acceptable for nonlinear data sets. Further, it is argued that the proposed method is well suited for the classification of low dimensional data dimensionally reduced by dimensionality reduction methods, especially the methods obtaining the low dimensional and neighborhood preserving embeddings, and it costs less time.  相似文献   

7.
针对基于接收信号指数强度(RSSI)的WLAN室内定位算法易受干扰、波动较大及室内指纹定位方法指纹库构建繁杂而工作量较大的问题,提出了一种基于稀疏表示的指纹定位技术,在离线阶段利用压缩感知的理论来构建离线数据库,以降低离线采集的复杂度,在线定位阶段利用向量相似性理论来提高定位的精度,实验结果表明,本文提出的算法有效地提高了室内静态定位问题的精度及抗干扰性能.  相似文献   

8.
Recent researches have shown that the sparse representation based technology can lead to state of art super-resolution image reconstruction (SRIR) result. It relies on the idea that the low-resolution (LR) image patches can be regarded as down sampled version of high-resolution (HR) images, whose patches are assumed to have a sparser presentation with respect to a dictionary of prototype patches. In order to avoid a large training patches database and obtain more accurate recovery of HR images, in this paper we introduce the concept of examples-aided redundant dictionary learning into the single-image super-resolution reconstruction, and propose a multiple dictionaries learning scheme inspired by multitask learning. Compact redundant dictionaries are learned from samples classified by K-means clustering in order to provide each sample a more appropriate dictionary for image reconstruction. Compared with the available SRIR methods, the proposed method has the following characteristics: (1) introducing the example patches-aided dictionary learning in the sparse representation based SRIR, in order to reduce the intensive computation complexity brought by enormous dictionary, (2) using the multitask learning and prior from HR image examples to reconstruct similar HR images to obtain better reconstruction result and (3) adopting the offline dictionaries learning and online reconstruction, making a rapid reconstruction possible. Some experiments are taken on testing the proposed method on some natural images, and the results show that a small set of randomly chosen raw patches from training images and small number of atoms can produce good reconstruction result. Both the visual result and the numerical guidelines prove its superiority to some start-of-art SRIR methods.  相似文献   

9.
In image fusion literature, multi-scale transform (MST) and sparse representation (SR) are two most widely used signal/image representation theories. This paper presents a general image fusion framework by combining MST and SR to simultaneously overcome the inherent defects of both the MST- and SR-based fusion methods. In our fusion framework, the MST is firstly performed on each of the pre-registered source images to obtain their low-pass and high-pass coefficients. Then, the low-pass bands are merged with a SR-based fusion approach while the high-pass bands are fused using the absolute values of coefficients as activity level measurement. The fused image is finally obtained by performing the inverse MST on the merged coefficients. The advantages of the proposed fusion framework over individual MST- or SR-based method are first exhibited in detail from a theoretical point of view, and then experimentally verified with multi-focus, visible-infrared and medical image fusion. In particular, six popular multi-scale transforms, which are Laplacian pyramid (LP), ratio of low-pass pyramid (RP), discrete wavelet transform (DWT), dual-tree complex wavelet transform (DTCWT), curvelet transform (CVT) and nonsubsampled contourlet transform (NSCT), with different decomposition levels ranging from one to four are tested in our experiments. By comparing the fused results subjectively and objectively, we give the best-performed fusion method under the proposed framework for each category of image fusion. The effect of the sliding window’s step length is also investigated. Furthermore, experimental results demonstrate that the proposed fusion framework can obtain state-of-the-art performance, especially for the fusion of multimodal images.  相似文献   

10.
Surface approximation with smooth functions suffers the problems of choosing the basis functions and representing non-smooth features. In this work, we introduce a sparse representation for surfaces with a set of redundant basis functions, which efficiently overcomes the overfitting artifacts. Moreover, we propose an approach of parameterization transformation, which makes the possibility to represent non-smooth features by the composition of a smooth function and a non-smooth domain optimization. We couple the sparse representation and the parameterization transformation in a global optimization to respect sharp features with smooth polynomial basis functions. Our approach is capable for approximating a wide range of surfaces with different level of sharp features. Experimental results have shown the feasibility and applicability of our proposed method in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号