首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 197 毫秒
1.
When sensing its environment, an agent often receives information that only partially describes the current state of affairs. The agent then attempts to predict what it has not sensed, by using other pieces of information available through its sensors. Machine learning techniques can naturally aid this task, by providing the agent with the rules to be used for making these predictions. For this to happen, however, learning algorithms need to be developed that can deal with missing information in the learning examples in a principled manner, and without the need for external supervision. We investigate this problem herein.We show how the Probably Approximately Correct semantics can be extended to deal with missing information during both the learning and the evaluation phase. Learning examples are drawn from some underlying probability distribution, but parts of them are hidden before being passed to the learner. The goal is to learn rules that can accurately recover information hidden in these learning examples. We show that for this to be done, one should first dispense the requirement that rules should always make definite predictions; “don't know” is sometimes necessitated. On the other hand, such abstentions should not be done freely, but only when sufficient information is not present for definite predictions to be made. Under this premise, we show that to accurately recover missing information, it suffices to learn rules that are highly consistent, i.e., rules that simply do not contradict the agent's sensory inputs. It is established that high consistency implies a somewhat discounted accuracy, and that this discount is, in some defined sense, unavoidable, and depends on how adversarially information is hidden in the learning examples.Within our proposed learning model we prove that any PAC learnable class of monotone or read-once formulas is also learnable from incomplete learning examples. By contrast, we prove that parities and monotone-term 1-decision lists, which are properly PAC learnable, are not properly learnable under the new learning model. In the process of establishing our positive and negative results, we re-derive some basic PAC learnability machinery, such as Occam's Razor, and reductions between learning tasks. We finally consider a special case of learning from partial learning examples, where some prior bias exists on the manner in which information is hidden, and show how this provides a unified view of many previous learning models that deal with missing information.We suggest that the proposed learning model goes beyond a simple extension of supervised learning to the case of incomplete learning examples. The principled and general treatment of missing information during learning, we argue, allows an agent to employ learning entirely autonomously, without relying on the presence of an external teacher, as is the case in supervised learning. We call our learning model autodidactic to emphasize the explicit disassociation of this model from any form of external supervision.  相似文献   

2.
This paper describes and evaluates an approach to combining empirical and explanation-based learning called Induction Over the Unexplained (IOU). IOU is intended for learning concepts that can be partially explained by an overly-general domain theory. An eclectic evaluation of the method is presented which includes results from all three major approaches: empirical, theoretical, and psychological. Empirical results show that IOU is effective at refining overly-general domain theories and that it learns more accurate concepts from fewer examples than a purely empirical approach. The application of theoretical results from PAC learnability theory explains why IOU requires fewer examples. IOU is also shown to be able to model psychological data demonstrating the effect of background knowledge on human learning.  相似文献   

3.
In this paper we consider an approach to passive learning. In contrast to the classical PAC model we do not assume that the examples are independently drawn according to an underlying distribution, but that they are generated by a time-driven process. We define deterministic and probabilistic learning models of this sort and investigate the relationships between them and with other models. The fact that successive examples are related can often be used to gain additional information similar to the information gained by membership queries. We show how this can be used to design on-line prediction algorithms. In particular, we present efficient algorithms for exactly identifying Boolean threshold functions and 2-term RSE, and for learning 2-term-DNF, when the examples are generated by a random walk on {0,1}n.  相似文献   

4.
5.
In this paper we are concerned with the problem of learning how to solve planning problems in one domain given a number of solved instances. This problem is formulated as the problem of inferring a function that operates over all instances in the domain and maps states and goals into actions. We call such functions generalized policies and the question that we address is how to learn suitable representations of generalized policies from data. This question has been addressed recently by Roni Khardon (Technical Report TR-09-97, Harvard, 1997). Khardon represents generalized policies using an ordered list of existentially quantified rules that are inferred from a training set using a version of Rivest's learning algorithm (Machine Learning, vol. 2, no. 3, pp. 229–246, 1987). Here, we follow Khardon's approach but represent generalized policies in a different way using a concept language. We show through a number of experiments in the blocks-world that the concept language yields a better policy using a smaller set of examples and no background knowledge.  相似文献   

6.
Machine learning techniques used in computer aided diagnosis (CAD) systems learn a hypothesis to help the medical experts make a diagnosis in the future. To learn a well-performed hypothesis, a large amount of expert-diagnosed examples are required, which places a heavy burden on experts. By exploiting large amounts of undiagnosed examples and the power of ensemble learning, the co-training-style random forest (Co-Forest) releases the burden on the experts and produces well-performed hypotheses. However, the Co-forest may suffer from a problem common to other co-training-style algorithms, namely, that the unlabeled examples may instead be wrongly-labeled examples that become accumulated in the training process. This is due to the fact that the limited number of originally-labeled examples usually produces poor component classifiers, which lack diversity and accuracy. In this paper, a new Co-Forest algorithm named Co-Forest with Adaptive Data Editing (ADE-Co-Forest) is proposed. Not only does it exploit a specific data-editing technique in order to identify and discard possibly mislabeled examples throughout the co-labeling iterations, but it also employs an adaptive strategy in order to decide whether to trigger the editing operation according to different cases. The adaptive strategy combines five pre-conditional theorems, all of which ensure an iterative reduction of classification error and an increase in the scale of new training sets under PAC learning theory. Experiments on UCI datasets and an application to small pulmonary nodules detection using chest CT images show that ADE-Co-Forest can more effectively enhance the performance of a learned hypothesis than Co-Forest and DE-Co-Forest (Co-Forest with Data Editing but without adaptive strategy).  相似文献   

7.
Using Genetic Algorithms for Concept Learning   总被引:23,自引:0,他引:23  
In this article, we explore the use of genetic algorithms (GAs) as a key element in the design and implementation of robust concept learning systems. We describe and evaluate a GA-based system called GABIL that continually learns and refines concept classification rules from its interaction with the environment. The use of GAs is motivated by recent studies showing the effects of various forms of bias built into different concept learning systems, resulting in systems that perform well on certain concept classes (generally, those well matched to the biases) and poorly on others. By incorporating a GA as the underlying adaptive search mechanism, we are able to construct a concept learning system that has a simple, unified architecture with several important features. First, the system is surprisingly robust even with minimal bias. Second, the system can be easily extended to incorporate traditional forms of bias found in other concept learning systems. Finally, the architecture of the system encourages explicit representation of such biases and, as a result, provides for an important additional feature: the ability todynamically adjust system bias. The viability of this approach is illustrated by comparing the performance of GABIL with that of four other more traditional concept learners (AQ14, C4.5, ID5R, and IACL) on a variety of target concepts. We conclude with some observations about the merits of this approach and about possible extensions.  相似文献   

8.
Different formal learning models address different aspects of human learning. Below we compare Gold-style learning—modelling learning as a limiting process in which the learner may change its mind arbitrarily often before converging to a correct hypothesis—to learning via queries—modelling learning as a one-shot process in which the learner is required to identify the target concept with just one hypothesis. In the Gold-style model considered below, the information presented to the learner consists of positive examples for the target concept, whereas in query learning, the learner may pose a certain kind of queries about the target concept, which will be answered correctly by an oracle (called teacher). Although these two approaches seem rather unrelated at first glance, we provide characterisations of different models of Gold-style learning (learning in the limit, conservative inference, and behaviourally correct learning) in terms of query learning. Thus we describe the circumstances which are necessary to replace limit learners by equally powerful one-shot learners. Our results are valid in the general context of learning indexable classes of recursive languages. This analysis leads to an important observation, namely that there is a natural query learning type hierarchically in-between Gold-style learning in the limit and behaviourally correct learning. Astonishingly, this query learning type can then again be characterised in terms of Gold-style inference.  相似文献   

9.
10.
An algorithmic theory of learning: Robust concepts and random projection   总被引:1,自引:0,他引:1  
We study the phenomenon of cognitive learning from an algorithmic standpoint. How does the brain effectively learn concepts from a small number of examples despite the fact that each example contains a huge amount of information? We provide a novel algorithmic analysis via a model of robust concept learning (closely related to “margin classifiers”), and show that a relatively small number of examples are sufficient to learn rich concept classes. The new algorithms have several advantages—they are faster, conceptually simpler, and resistant to low levels of noise. For example, a robust half-space can be learned in linear time using only a constant number of training examples, regardless of the number of attributes. A general (algorithmic) consequence of the model, that “more robust concepts are easier to learn”, is supported by a multitude of psychological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号