首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The successful launch of the Landsat 8 satellite continues the Earth observation of the Landsat series, which has been taking place for nearly 40 years. With the increase in the band number and the improved spectral range compared with the previous Landsat imagery, it will be possible to expand the application of the new Landsat 8 imagery. The purpose of this study is to explore water extraction based on the new Landsat 8 Operational Land Imager (OLI) imagery. According to the specific inland water conditions (clear water, turbid water, and eutrophic water), a number of highly adaptable water indices are assessed for water extraction using Landsat OLI imagery. The results show that clear water is the easiest to extract among the different types of waterbodies, with the highest average accuracy of 97%. The highest-accuracy methods are the automated water extraction index for shadow pixels (AWEIsh), the normalized difference water index using bands 4 and 7 (NDWI47), and the normalized difference water index using bands 3 and 7 (NDWI37), with accuracies of 98.55%, 95.50%, and 96.61%, corresponding to clear water, turbid water, and eutrophic water, respectively. Through the analysis of the different methods for optimal band selection, the seventh band OLI7 (shortwave infrared 2, SWIR-2) of Landsat OLI shows the best performance in water identification. When applying the water indices to water extraction, Otsu’s algorithm has been used to automatically select the water threshold. Using extensive experiments with Otsu’s algorithm and a manual method, it was found that Otsu’s algorithm can replace manual selection and has the ability to select an accurate threshold for water extraction.  相似文献   

2.
This article first examines three existing methods of delineating open water features, i.e. the normalized difference water index (NDWI), the modified normalized difference water index (MNDWI) and a method combining the near-infrared (NIR) band and the maximum likelihood classification. We then propose two new methods for the fast extraction of water features in remotely sensed imagery. Our first method is a pixel-based procedure that utilizes indices and band values. Based on their characteristic spectral reflectance curves, waterbodies are grouped into three types – clear, green and turbid. We found that the MNDWI is best suited for identifying clear water. Green water has its maximum reflectance in Landsat Thematic Mapper (TM) band 4 (NIR band), whereas turbid water has its maximum reflectance in TM band 5 (mid-infrared band). Our second method integrates our pixel-based classification with object-based image segmentation. Two Landsat scenes in Shaanxi Province, China, were used as the primary data source. Digital elevation models (DEMs) and their derived slope maps were used as ancillary information. To evaluate the performance of the proposed methods, extraction results of the three existing methods and our two new methods were compared and assessed. A manual interpretation was made and used as reference data. Results suggest that our methods, which consider the diversity of waterbodies, achieved better accuracy. Our pixel-based method achieved a producer's accuracy of 92%, user's accuracy of 90% and kappa statistics of 0.91. Our integrated method produced a higher producer's accuracy (95%), but a lower user's accuracy (72%) and kappa statistics (0.72), compared with the pixel-based method. The advantages and limitations of the proposed methods are discussed.  相似文献   

3.
Surface waterbodies in arid and semi-arid environments are threatened by both natural and anthropogenic pressures. Mapping the distribution of surface waterbodies is crucial for managing their dwindling quantities and quality. In this study, a fast and reliable method of water extraction has been introduced. A remote-sensing index called the simple water index (SWI) was formulated to differentiate waterbodies from vegetation class automatically, and to differentiate waterbodies from shadows or built-up areas (water-like features). Its performance was compared with the automated water extraction index (AWEI) and the modified normalized difference water index (MNDWI) on Landsat 8 Operational Land Imager (OLI) image of South Africa. The robustness of the algorithm was tested on images in Madagascar and the Democratic Republic of Congo (DRC) with different biomes. The overall accuracies and kappa coefficient (κ) were used to compare the performance of each index. The McNemar test was performed to assess the significance of the output map and the validation data set. The SWI showed the highest overall accuracy of 91.9% (κ = 0.83), whereas the AWEI and MNDWI yielded overall accuracies of 83.8% (κ = 0.65) and 78.4% (κ = 0.53), respectively. The McNemar test showed that there was no significant difference between the SWI map (p = 0.248), whereas both AWEI and MNDWI maps were significantly different from the validation data set at = 0.041 and p = 0.013, respectively. The SWI approach reduces the thresholding problem by 50% over the conventional MNDWI and AWEI. It is expected that the SWI will also be useful for the accurate quantification of waterbodies for large areas.  相似文献   

4.
The extraction of water distribution is extremely useful in research and planning activities, including those associated with water resources, environments, disasters, local climates, and other factors. Remote-sensing images with moderate resolution have been the main data source due to the vast distribution of water and the high cost, access difficulty, and massive size of high-resolution images. Although some water indices and methods for water extraction have been proposed, there is still a lack of these resources to easily, accurately, efficiently, and automatically extract water. This paper focused on some improvements that mainly used the most traditional but also the newest Operational Land Imager (OLI) images in Landsat 8. This study first analysed the variation features of previous water indices. Secondly, taking the city of Beijing and its surrounding area as the experimental site, a spectral curve analysis was performed and a new water index was proposed. This index was compared to three typical indices. Thirdly, a new approach was proposed to accurately and easily extract water. It included four major steps: background partitioning, thresholding and preliminary segmentation, noise removal by patch size, and local region growth. Next, the stricter and more effective stratified random sampling method was used to test the accuracy. Then, we tested the generality of the proposed water index and extraction method using nine typical test sites from around the world and tried to simplify the workflow. Finally, this paper discusses threshold optimization issues, such as automatic selection and reduction of the number of thresholds. The results show that the normalized water index (NDWI), modified normalized water index (MNDWI), and normalized difference built-up index (NDBI) may fail in some situations due to the complex spectrum of the impervious surface class. Some shadow pixels were impossible to remove using only spectral analysis because both the digital number (DN) trends and values were similar to those of water. The proposed water index was easy and simple, but it corresponded better to water bodies. Additionally, it was more accurate and universal and showed greater potential for extracting water. This method relatively accurately and completely extracted various water bodies from plain city, plain country, and natural mountainous regions in many typical climate zones, eliminating interference caused by dark impervious surfaces, plants, sand, suspended sediments, snow, ice, bedrock, reservoir drawdown areas, shadows from mountains and buildings, mixed pixels, etc. The mean kappa coefficients were 0.988, 0.982, and 0.984 in plain city, plain country, and natural mountainous regions, respectively. This paper suggests that thresholds can be automatically determined by comparing the accuracy changes of different thresholds according to preselected sample and test points. Furthermore, the combined use of the maximum class square error method (also known as the Ostu algorithm) and the adaptive thresholding method exhibits great potential for automatic determination of thresholds in regions without many noises with higher water index values. In addition, water bodies could also be accurately extracted by setting these thresholds to fixed values based on the results at more test sites.  相似文献   

5.
A new index for delineating built‐up land features in satellite imagery   总被引:1,自引:0,他引:1  
A new index derived from existing indices – an index‐based built‐up index (IBI) – is proposed for the rapid extraction of built‐up land features in satellite imagery. The IBI is distinguished from conventional indices by its first‐time use of thematic index‐derived bands to construct an index rather than by using original image bands. The three thematic indices used in constructing the IBI are the soil adjusted vegetation index (SAVI), the modified normalized difference water index (MNDWI) and the normalized difference built‐up index (NDBI). Respectively, these represent the three major urban components of vegetation, water and built‐up land. The new index has been verified using the Landsat ETM+ image of Fuzhou City in southeastern China. The result shows that the IBI can significantly enhance the built‐up land feature while effectively suppressing background noise. A statistical analysis indicates that the IBI possesses a positive correlation with land surface temperature, but negative correlations with the NDVI and the MNDWI.  相似文献   

6.
遥感影像的水库水体信息提取对水库面积变化监测有很大的帮助,因此,提出一种基于遗传算法和改进Otsu算法的水体提取方法。对处理后的遥感影像使用NDWI (normalized difference water index)水体指数法进行初始的水体提取,由于传统的Otsu算法对直方图呈现双峰分布的图像提取效果不佳,利用遗传算法对最大类间方差公式进行双阈值计算,引入滑动窗口对图像进行阈值判断;使用自适应阈值算法进行局部阈值分割。通过对石梁河水库和小塔山水库的实验,表明该方法能够准确提取出水库的水体信息,误提取和漏提取现象得到了很大的改善。  相似文献   

7.
由于遥感技术能够快速、高效地获取地表水体的时空分布特征,目前基于影像提取内陆水体的方法很多,但针对不同类型的水域,哪一种方法提取效果更好,是值得探讨的问题。以天健湖、须水河和黄河郑州段3个水域为研究对象,基于GF-2,Landsat 8,SPOT5卫星影像,采用水体、植被指数法等几种方法提取水域部分。通过分析提取效果,得出:对于水体较浅的天健湖,无论是GF-2还是Landsat 8影像,提取效果较好的方法是水体指数法,提取效果较差的均为单波段阈值法;对于相对较深的须水河,无论是GF-2还是Landsat 8影像,提取效果较好的方法是植被指数法,提取效果较差的均为单波段阈值法;对于含沙量较大、有细小水体的黄河水域,提取效果相对较好的是水体指数法,较差的是单波段阈值法和植被指数法。表明:在基于影像提取水体时,首先应弄清水域的情况,以采用相应的遥感指数。  相似文献   

8.
基于客观阈值与随机森林Gini指标的水体遥感指数对比   总被引:1,自引:0,他引:1  
利用福建福州、西藏尼玛和澳大利亚弗伦奇3地代表不同水体类型的Sentinel-2A MSI和Landsat-8 OLI数据,采用客观阈值法(0阈值)和随机森林重要性评估法,比较和分析了改进型归一化差值水体指数(Modified Normalized Difference Water Index, MNDWI)、自动水体提取指数(Automated Water Extraction Index, AWEI)和水体指数2015 (Water Index 2015, WI2015) 这3种世界常用的水体指数之间的差异。从水体增强的效果来看,MNDWI增强的水体不仅具有丰富的信息还具有鲜明的对比度,AWEI和WI2015增强的水体信息的对比度相对偏弱。精度验证表明:3种指数提取的水体精度都较高,但MNDWI在3个地区的平均总精度略高于WI2015和AWEI,3者的平均总精度分别为91.83 %、91.16 %和90.07 %。在提取细小水体方面,MNDWI的能力强于其他2种指数,在阴影较为明显的高原山地区域,MNDWI提取水体的效果优于AWEI和WI2015。进一步采用随机森林的Gini指标进行的重要性评估表明,MNDWI在区分水体和非水体的分类中表现出了很强的重要性,尤其在Sentinel-2A MSI数据中表现得更为突出,而WI2015和AWEI的重要性则相对较弱。  相似文献   

9.
邹佳俊  温兴平  孙路遥  陈孟 《软件》2020,(4):96-101
遥感技术在水体监测方面已有成熟应用,风云三号是我国自主研发卫星,时间分辨率高、覆盖范围广,能短时间内完整监测大范围水体。针对国产FY-3系列中分辨率卫星在水体信息自动化提取中的应用问题,以FY-3C MERSI影像为数据源,采用归一化差异水体指数(NDWI)结合大津算法(Otsu)进行阈值分割,提取出洱海水体边界,通过与采用相同方法的邻近时期Landsat 8 OLI影像水体提取结果的对比分析,发现二者水体边界整体拟合较好,面积误差为1.53%,FY-3C MERSI影像较为快速、准确地提取出了洱海水体。表明MERSI数据在水体信息自动化提取方面具有较高的应用价值和潜力,可用于较大面积湖泊的水体提取。  相似文献   

10.
11.
The normalized difference water index (NDWI) of McFeeters (1996 McFeeters, S. K. 1996. The use of normalized difference water index (NDWI) in the delineation of open water features.. International Journal of Remote Sensing, 17: 14251432. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]) was modified by substitution of a middle infrared band such as Landsat TM band 5 for the near infrared band used in the NDWI. The modified NDWI (MNDWI) can enhance open water features while efficiently suppressing and even removing built‐up land noise as well as vegetation and soil noise. The enhanced water information using the NDWI is often mixed with built‐up land noise and the area of extracted water is thus overestimated. Accordingly, the MNDWI is more suitable for enhancing and extracting water information for a water region with a background dominated by built‐up land areas because of its advantage in reducing and even removing built‐up land noise over the NDWI.  相似文献   

12.
Multi-temporal satellite images are widely used to delineate objects of interest for monitoring surface changes. Threshold value(s) are often determined from a histogram of a delineation index. However, the threshold determined may vary and be case-dependent, with images taken at different times. Although the variation is well known, its cause remains unclear, and this raises doubts about the reliability of the classification results. This study selects three widely used indices, the near-infrared (NIR) band, the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), all of which can be used to delineate water surfaces. Our theoretical analysis reveals that sensor calibration, the Sun–target–satellite geometry and the atmospheric optical properties create synthetic effects on the satellite's digital number (DN) and, subsequently, on the thresholds for delineation. The DN-based threshold has a significant dependence on the reflectance-based counterpart, which has been proved with multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) data for the Poyang Lake region of China. Our results show that a DN-based threshold is generally higher than a reflectance-based one, and ~90% of the difference is accounted for by temporal influences. A quantification of the temporal influences provides a physical explanation to the variation in thresholds, and the findings should be valuable for improving the reliability of long-term studies using multi-temporal images.  相似文献   

13.
The use of synthetic aperture radar (SAR) imagery is generally considered to be an effective method for detecting surface water. Among various supervised/unsupervised classification methods, a SAR-intensity-based histogram thresholding method is widely used to distinguish waterbodies from land. A SAR texture-based automatic thresholding method is presented in this article. The use of texture images substantially enhances the contrast between water and land in intensity images. It also makes the method less sensitive to incidence angles than intensity-based methods. A modified Otsu thresholding algorithm is applied to selected sub-images to determine the optimal threshold value. The sub-images were selected using k-means results to ensure a sufficient number of pixels for both water and land classes. This is critical for the Otsu algorithm being able to detect an optimal threshold for a SAR image. The method is completely unsupervised and is suitable for large SAR image scenes. Tests of this method on a Radasat-2 image mosaicked from 8 QuadPol scenes covering the Spritiwood valley in Manitoba, Canada, show a substantial increase in land–water classification accuracy over the commonly used SAR intensity thresholding method (kappa indices are 0.89 vs. 0.79). The method is less computationally intensive and requires less user interaction. It is therefore well suited for detecting waterbodies and monitoring their dynamic changes from a large SAR image scene in a near-real time environment).  相似文献   

14.
准确提取流域水系信息是进行水资源开发利用的首要任务。利用NDWI和MNDWI提取半干旱地区水系,无法有效的区分水系内的半干涸河道与背景噪音。本文在分析半干旱地区水系与背景噪音反射特点的基础上,提出了增强型水体指数EWI(Enhanced Water Index),有效地区分了半干涸河道与背景噪音。在利用形状指数去噪音方法的基础上,使用GIS技术去除背景噪音,弥补了形状指数去噪音方法的缺陷,更好的去除了水系提取过程中混入的背景噪音。综合使用上述两种方法,可以快速、准确、简便地提取出半干旱地区的水系。为此类地区水资源的开发利用打下了基础。  相似文献   

15.
Lakes are sensitive to both climate change and human activities, and therefore serve as an excellent indicator of environmental change. Based on a time series of Landsat images over the last 16 years, this article attempts to provide a first picture of the annual variations in area of nine plateau lakes in Yunnan province, China. The modified normalized difference water index (MNDWI) and object-based image analysis (OBIA) are used to extract the waterbodies. Compared with the visual interpretation (VI) of the lakes, the precision of the combined method is greater than 99.7%. A spatiotemporal analysis is also carried out for the lakes. The results show that the water areas of most of the plateau lakes have been stable over the last 16 years, although some years have shown significant changes. However, it should be noted that Lake Qilu and Lake Yilong shrunk significantly after 2011. Moreover, the orientation of the shrinkage is different. Limited evidence suggests that the differences in the area change of the nine plateau lakes are caused by both climate change and human activities.  相似文献   

16.
Defense Meteorological Satellite Program/Operational Linescan System(DMSP/OLS)is one of the data sources,which can effectively reflect human activities of earth surfaces.During the past decade,DMSP/OLS had been extensively applied in urban extraction and extension study.In the recent year,the Vegetation Adjusted NTL Urban Index(VANUI)has been proposed and had proven to be a simple,convenient and high precision desaturation index to extract urban area.In VANUI method,negative values of imagery were directly eliminated to remove water body,which not only removed the bridge over the river and building but also extracted the aquaculture areas along the coast,thus,this method reduced the extraction accuracy.This paper proposed a new index\|RwNTLI,combining DMSP/OLS nighttime light data and the vegetation index (NDVI)and water index (MNDWI)which were constructed by Landsat data.In this study,Guangzhou was taken as experimental area.By comparing the VANUI index with the ability to identify ground objects as well as the ability to alleviate saturation regions,the result showed RwNTLI index could effectively solve the problem of VANUI as well as eliminate saturation effect of nighttime light imagery.Among them,the correlation between RwNTLI index and RCNTL is better than that of VANUI index and RCNTL.Therefore,RwNTLI index is a simple and effective index of luminous desaturation,which has more advantages than VANUI index in describing the characteristics of night lights of urban areas and will have higher application value in urban built\|up areas in the future.  相似文献   

17.
Poyang Lake is a seasonal lake, exchanging water with the lower branch of the Yangtze River. During the spring and summer flooding season it inundates a large area while in the winter it shrinks considerably, creating a large tract of marshland for wild migratory birds. A better knowledge of the water coverage duration and the beginning and ending dates for the vast range of marshlands surrounding the lake is important for the measurement, modelling and management of marshland ecosystems. In addition, the abundance of a special type of snail (Oncomelania hupensis), the intermediate host of parasite schistosome (Schistosoma japonicum) in this region, is also heavily dependent on the water coverage information. However, there is no accurate digital elevation model (DEM) for the lake bottom and the inundated marshland, nor is there sufficient water level information over this area. In this study, we assess the feasibility of the use of multitemporal Landsat images for mapping the spatial‐temporal change of Poyang Lake water body and the temporal process of water inundation of marshlands. Eight cloud‐free Landsat Thematic Mapper images taken during a period of one year were used in this study. We used the normalized difference water index (NDWI) and the modified normalized difference water index (MNDWI) methods to map water bodies. We then examined the annual spatial‐temporal change of the Poyang Lake water body. Finally we attempted to obtain the duration of water inundation of marshlands based on the temporal sequence of water extent determined from the Landsat images. The results showed that although the images can be used to capture the snapshots of water coverage in this area, they are insufficient to provide accurate estimation of the spatial‐temporal process of water inundation over the marshlands through linear interpolation.  相似文献   

18.
Microwave-based remote sensing algorithms for mapping soil moisture are sensitive to water contained in surface vegetation at moderate levels of canopy cover. Correction schemes require spatially distributed estimates of vegetation water content at scales comparable to that of the microwave sensor footprint (101 to 104 m). This study compares the relative utility of high-resolution (1.5 m) aircraft and coarser-resolution (30 m) Landsat imagery in upscaling an extensive set of ground-based measurements of canopy biophysical properties collected during the Soil Moisture Experiment of 2002 (SMEX02) within the Walnut Creek Watershed. The upscaling was accomplished using expolinear relationships developed between spectral vegetation indices and measurements of leaf area index, canopy height, and vegetation water content. Of the various indices examined, a Normalized Difference Water Index (NDWI), derived from near- and shortwave-infrared reflectances, was found to be least susceptible to saturation at high levels of leaf area index. With the aircraft data set, which did not include a short-wave infrared water absorption band, the Optimized Soil Adjusted Vegetation Index (OSAVI) yielded best correlations with observations and highest saturation levels. At the observation scale (10 m), LAI was retrieved from both NDWI and OSAVI imagery with an accuracy of 0.6, vegetation water content at 0.7 kg m−2, and canopy height to within 0.2 m. Both indices were used to estimate field-scale mean canopy properties and variability for each of the intensive soil-moisture-sampling sites within the watershed study area. Results regarding scale invariance over the SMEX02 study area in transformations from band reflectance and vegetation indices to canopy biophysical properties are also presented.  相似文献   

19.
基于TM影像的几种常用水体提取方法的比较和分析   总被引:5,自引:0,他引:5  
随着遥感技术的飞速发展,利用遥感数据来进行水资源的监测、调查和分析已成为一种必然的趋势。从遥感影像中快速、准确地提取水体信息,是进行水资源调查和监测的一种重要的方法和手段。目前进行水体提取的方法有很多,本文选取了常用的3种水体提取方法,即单波段阈值法、基于阈值的多波段谱间关系法、基于阈值的水体指数法,然后分别选取典型的武汉平原地区和宜昌山地地区为研究区,以Landsat5TM影像为数据源,通过实验来比较和分析这3种水体提取方法分别在平原地区和山地地区的优势和不足。  相似文献   

20.
基于SAR图像的阈值分割法是水体信息有效提取的常用方法之一。针对Otsu算法对于SAR影像水体提取精度低、噪声大的问题,以C波段Sentinel-1 SAR为数据源,提出一种基于Otsu算法的SAR图像水体提取新方法。该方法首先基于双极化数据构建自然指数函数,优化原始Sentinel-1数据图像像元直方图分布,再结合Otsu算法对图像进行水体提取,最后基于DEM数据去除误提取的山体阴影。以同一天的Landsat 8光学影像作为真实水体样本进行精度评定,结果表明:在不同水体占比情况下,该方法水体提取精度均优于Otsu算法,在水体占比小于10%时综合精度提升约为20%—60%,而且噪声小、适用性强,可用于快速高效获取大范围内水体信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号