首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
物体检测是工作于室内环境的移动机器人必须解决的问题。物体检测受到环境动态变化的影响,其中尤以光照变化的影响最为明显。分析室内环境中光照变化特点,研究如何通过提取图像空间特征快速识别环境中光照状况,并以光照识别结果控制物体检测模式切换,在不同光照状态下,自适应地选择使用图像传感器或者激光传感器数据,结合深度学习的特征选择能力,保证物体检测性能。机器人运行时,首先通过提取图像在CIEXYZ空间Y分量上的统计特征,并结合一些其他特征,实现快速地对图像拍摄时所处环境的光照状态进行估计;在光照适中的情况下,利用R-CNN算法结合移动机器人特点,实现在图像空间下的快速物体检测;在光照不足或过强时,先把三维激光传感器获取的点云转换成深度图像,再利用R-CNN算法实现物体检测。实验结果表明了所提出算法的有效性。  相似文献   

2.
盛恒  黄铭  杨晶晶 《计算机应用》2019,39(6):1669-1674
针对人员位置相对固定的场景中实时人数统计的管理需求,以普通高校实验室为例,设计并实现了一套基于更快速的区域卷积神经网络(Faster R-CNN)和交并比(IoU)优化的实验室人数统计与管理系统。首先,使用Faster R-CNN模型对实验室内人员头部进行检测;然后,根据模型检测的输出结果,利用IoU算法滤去重复检测的目标;最后,采用基于坐标定位的方法确定实验室内各个工作台是否有人,并将相对应的数据存入数据库。该系统主要功能有:①实验室实时视频监控及远程管理;②定时自动拍照检测采集数据,为实验室的量化管理提供数据支撑;③实验室人员变化数据查询与可视化展示。实验结果表明,所提基于Faster R-CNN和IoU优化的实验室人数统计与管理系统可用于办公场景中实时人数统计和远程管理。  相似文献   

3.
基于深度特征的目标检测方法Faster R-CNN在火焰检测任务上存在检测效率低的问题,因此提出了基于颜色引导的抛锚策略。该策略设计火焰颜色模型来限制锚的生成,即利用火焰颜色约束锚的生成区域,从而减少了初始锚的数量,提升了计算效率。为了进一步提高网络的计算效率,将区域生成网络中的卷积层替换成掩膜卷积。为了验证所提方法的检测效果,采用BoWFire和Corsician数据集进行验证。实验结果表明,该方法实际检测速度相较于原Faster R-CNN提高了10.1%,BoWFire上该方法的火焰检测F值为0.87,Corsician上该方法的准确度可达99.33%。所提方法可以提高火焰检测的效率,并能够准确检测图像中的火焰。  相似文献   

4.
大多数关于自动植物识别的现有研究,集中于识别植物的单一器官,例如,花、叶或果实.使用单个器官的植物识别不够可靠,因为许多不同的植物却有着极其相似的器官.对于野外直接采集的图片,通常都有着复杂的背景,这也是目前的植物图像识别准确率不高的又一个原因.为了克服图像识别中的这两个难题,提出一种基于迁移学习的多线索植物识别方法,...  相似文献   

5.
目标检测是遥感图像信息提取领域中的研究热点之一,具有广泛的应用前景。近些年来,深度学习在计算机视觉领域的发展为海量遥感图像信息提取提供了强大的技术支撑,使得遥感图像目标检测的精确度和效率均得到了很大提升。然而,由于遥感图像目标具有多尺度、多种旋转角度、场景复杂等特点,在高质量标记样本有限的情况下,深度学习在遥感图像目标检测应用中仍面临巨大挑战。从尺度不变性、旋转不变性、复杂背景干扰、样本量少和多波段数据检测5个角度出发,总结了近几年基于深度学习的遥感图像目标检测方法。此外,对典型遥感图像目标的检测难点和方法进行分析和总结,并对公开的遥感图像目标检测数据集进行概述。最后阐述了遥感图像目标检测研究的未来趋势。  相似文献   

6.
针对实时目标检测YOLO(You Look Only Once)算法中存在的检测精度低和网络模型训练速度慢等问题,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,提出了在YOLO网络结构加入批再规范化处理的改进算法。该YOLO改进算法把卷积层经过卷积运算产生的特征图看作一个个神经元,然后对这些神经元进行规范化处理。同时,在网络结构中移除了Dropout,并增大了网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度以及通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。  相似文献   

7.
随着大型图像集的出现以及计算机硬件尤其是GPU的快速发展,卷积神经网络(CNN)已经成为人工智能领域的一种成功算法,在各种机器学习任务中表现出色.但CNN的计算复杂度远高于传统算法,嵌入式设备上有限资源的限制成为制造高效嵌入式计算的挑战性问题.在本文中,我们提出了一种基于嵌入式设备的高效卷积神经网络用于电力设备检测,根据处理速度评估这种高效的神经网络.结果表明,该算法能够满足嵌入式设备实时视频处理的要求.  相似文献   

8.
邹斌  张聪 《计算机应用》2023,43(1):61-66
为提高拥挤场景下的人群检测准确率,提出一种基于改进Faster R-CNN的密集人群检测算法。首先,在特征提取阶段添加空间与通道注意力机制,使用加强的双向特征金字塔网络(S-BiFPN)替代原网络中的多尺度特征金字塔(FPN),使网络对重要特征进行自主学习并加强对图像深层特征的提取;其次,引入多实例预测(MIP)算法对实例进行预测,以避免模型对拥挤场景下的目标造成漏检;最后,对模型中的非极大值抑制(NMS)进行优化,并额外增设一个交并比(IoU)阈值,以对检测结果的干扰项进行精确抑制。在开源的密集人群检测数据集上进行测试的结果显示,相较于原Faster R-CNN算法,所提算法的平均精度(AP)提升5.6%,Jaccard指数值提升3.2%。所提算法具有较高检测精度和稳定性,可以满足密集场景人群检测的需求。  相似文献   

9.
冯涛  陈斌  张跃飞 《计算机应用》2020,40(11):3332-3339
针对染色体图像的人工分割耗时费力且当前自动分割方法精度不佳的问题,基于改进的Mask R-CNN提出了一种染色体图像分割框架——Mask Oriented R-CNN,引入方向信息对染色体图像进行实例分割。首先,新增有向包围框回归分支,以预测紧实包围框并获取方向信息;然后,提出新的交并比(IoU)度量——角度加权交并比(AwIoU),从而结合方向信息与边的关系以改进冗余包围框的判据;最后,实现有向卷积通路结构,通过拷贝掩模分支通路并依据实例的方向信息选择训练路径来减少掩模预测中的干扰。实验结果表明,相较于基准模型Mask R-CNN,Mask Oriented R-CNN在IoU阈值为0.5时的平均精度均值指标提升了10.22个百分点,IoU阈值为0.5~0.95时的平均指标提升了4.91个百分点。研究结果显示,Mask Oriented R-CNN框架相较于基准模型取得了更好的染色体图像分割结果,有助于实现染色体图像自动分割。  相似文献   

10.
针对糖尿病视网膜病变(DR)图像分辨率过大、病灶特征过于分散难以获取以及正负难易样本不平衡而导致DR分期精确率一直无法得到有效提高的问题,提出了改进的基于快速区域的卷积神经网络(Faster R-CNN)和子图分割相结合的DR分期方法。首先,使用子图分割解决视盘区域对于病灶识别的干扰问题;其次,在特征提取阶段使用深度残差网络以解决病灶在高分辨率眼底图像中占比小而导致的特征难以获取的问题;最后,在感兴趣区域(ROI)生成时采用在线困难样本挖掘(OHEM)方法解决正负难易样本不平衡的问题。在国际公开数据集EyePACS进行DR分期实验,所提方法在DR病分期中精确率0期达到94.83%,1期达到86.84%,2期达到94.00%,3期达到87.21%,4期达到82.96%。实验结果表明,改进后的Faster R-CNN能对DR图像高效分期并自动标注出病灶。  相似文献   

11.
基于卷积神经网络的交通标志检测算法在对现实中复杂的交通场景图像进行交通标志检测时,难以同时解决定位和分类两项任务,并且目标检测领域相关算法所使用的公开数据集提供的图像和交通标志的种类不能满足现实交通场景中复杂的情况。建立一个新的道路交通标志数据集,在YOLOv4算法的基础上针对现实交通场景图像的复杂性和图像中交通标志尺寸差异较大的特点,设计多尺寸特征提取模块和增强特征融合模块,提高算法同时定位和分类交通标志的能力。在此基础上,对算法中不同的模块设置不同的参数进行对照实验,得到一组表现最优的参数,用于检测现实交通场景图片中的交通标志。在道路交通标志数据集上的实验结果表明,该算法相比基于卷积神经网络的同类型任务目标检测算法具有更高的检测精度,平均精度均值达到83.63%。  相似文献   

12.
为了进一步提高网络异常检测的准确率,本文在对现有入侵检测模型分析的基础上,提出了一种基于卷积神经网络和支持向量机的网络报文入侵检测方法.该方法首先将数据预处理成二维矩阵,为了防止算法模型过拟合,利用permutation函数将数据随机打乱,然后利用卷积神经网络CNN从预处理后的数据中学习有效特征,最后通过支持向量机SV...  相似文献   

13.
针对传统故障诊断方法中多传感器数据融合技术难度大、特征提取困难等问题,提出了一种基于深度卷积网络的多传感器信号故障诊断方法,通过构建测量数据帧进行卷积计算实现多通道数据的自然融合,利用深度网络结构实现高层特征的自动提取和分类,从而高效地实现了故障分类诊断;经分别采用小规模数据集REF和大规模故障数据集BI02进行实验验证,均取得了较高的故障识别准确率,具有很强的工程应用价值。  相似文献   

14.
深度学习作为机器学习的一个分支,在各个领域的应用越来越广,已经成为语音识别、自然语言处理、信息检索等方面的一个主要发展方向;其在图像分类、目标检测等方面更是不断取得新的突破。文中首先梳理了卷积神经网络在目标检测中的典型应用;其次,对几种典型卷积神经网络的结构进行了对比,并总结了各自的优缺点;最后,讨论了深度学习现阶段存在的问题以及未来的发展方向。  相似文献   

15.
在目标检测方法中,通过使用具有不同遮挡程度的数据集进行训练,能够提升目标检测算法对遮挡的不变性,但现实生活中的数据集往往存在长尾效应。因此提出一种基于对抗网络与卷积神经网络的目标检测方法。通过对抗网络在输入数据上进行计算得到不同遮挡程度的样本,使用Faster RCNN算法进行训练提升遮挡不变性,以此提高算法检测精度。实验结果表明,该方法与Faster RCNN相比,在VOC 2007数据集上平均精度提升了2.2个百分点,在VOC 2007和VOC 2012联合数据集上平均精度提升了1.3个百分点。  相似文献   

16.
罗晖  贾晨  芦春雨  李健 《计算机应用》2021,41(3):904-910
针对钢轨踏面块状伤损存在的尺度变化大、样本数据集小的问题,提出了基于改进Faster R-CNN的钢轨踏面块状伤损检测方法。首先,基于ResNet-101基础网络结构来构建多尺度特征金字塔(FPN),以实现深、浅层特征信息的融合,从而提高了小尺度伤损的检测精度;然后,采用广义交并比(GIoU)损失解决了Faster R-CNN中回归损失SmoothL1对预测边框位置不敏感问题;最后,提出引导锚定的区域提名网络(GA-RPN)方法,从而解决了区域生成网络(RPN)生成的锚点大量冗余而导致的检测网络训练中正负样本失衡问题。训练过程中,基于翻转、裁剪、噪声扰动等图像预处理方法对RSSDs数据集进行扩充,解决了钢轨踏面块状伤损训练样本不充足问题。实验结果表明,所提改进方法对钢轨踏面块状伤损检测的平均精度均值(mAP)可达到82.466%,相较于Faster R-CNN提高了13.201个百分点,能够更加准确地检测钢轨踏面块状伤损。  相似文献   

17.
18.
朱繁  王洪元  张继 《计算机应用》2019,39(11):3210-3215
针对复杂场景下行人检测效果差的问题,采用基于深度学习的目标检测中领先的研究成果,提出了一种基于改进Mask R-CNN框架的行人检测算法。首先,采用K-means算法对行人数据集的目标框进行聚类得到合适的长宽比,通过增加一组长宽比(2:5)使12种anchors适应图像中行人的尺寸;然后,结合细粒度图像识别技术,实现行人的高定位精度;其次,采用全卷积网络(FCN)分割前景对象,并进行像素预测获得行人的局部掩码(上半身、下半身),实现对行人的细粒度检测;最后,通过学习行人的局部特征获得行人的整体掩码。为了验证改进算法的有效性,将其与当前具有代表性的目标检测方法(如更快速的区域卷积神经网络(Faster R-CNN)、YOLOv2、R-FCN)在同数据集上进行对比。实验结果表明,改进的算法提高了行人检测的速度和精度,并且降低了误检率。  相似文献   

19.
基于卷积神经网络(CNN)的入侵检测方法在实际应用中模型训练时间过长、超参数较多、数据需求量大。为降低计算复杂度,提高入侵检测效率,提出一种基于集成深度森林(EDF)的检测方法。在分析CNN的隐藏层结构和集成学习的Bagging集成策略的基础上构造随机森林(RF)层,对每层中RF输入随机选择的特征进行训练,拼接输出的类向量和特征向量并向下层传递迭代,持续训练直至模型收敛。在NSL-KDD数据集上的实验结果表明,与CNN算法相比,EDF算法在保证分类准确率的同时,其收敛速度可提升50%以上,证明了EDF算法的高效性和可行性。  相似文献   

20.
基于卷积神经网络的面向对象露天采场提取   总被引:1,自引:0,他引:1  
矿产资源的过度开发会对自然环境造成严重的负影响,矿山环境监测对生态文明建设具有十分重要意义.在目前的矿山环境监测中,机器学习算法被广泛的使用并取得了较为良好的效果.近年来,随着深度学习领域的快速发展,相关理论知识也逐渐被应用于遥感图像处理中.将深度学习算法与面向对象的思想相结合,以高分二号影像作为研究数据,使用卷积神经...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号