首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用“分段蕴含”(PWE)方法, 用一组线性变参数模型(LPV)近似约束非线性系统, 降低模型近似的保守性. 对每个LPV模型引入参数Lyapunov函数, 得到稳定的控制律, 并施加于非线性系统. 当检测到LPV模型发生切换时, 根据可行域的离线设计方法确定适当的切换律, 使系统按照设定的规则切换, 保证切换后的初始状态可行. 在文章最后给出了基于切换策略的控制算法的可行性和稳定性. 与传统非线性预测控制相比, 基于切换策略的鲁棒预测 控制方法保守性更低, 计算量更小.  相似文献   

2.
风力机的线性变参数主动容错控制   总被引:1,自引:0,他引:1  
针对风力机具有非线性和参数的不确定性的特征,提出了基于线性变参数(linear parameter varying,LPV)增益调度的风力机主动容错控制方法,降低故障对机组动态特性的影响.基于LPV凸分解方法,将风力机的非线性模型转化为具有凸多面体结构LPV模型,利用线性矩阵不等式(linear matrix inequalities,LMIs)技术对凸多面体各个顶点分别设计满足性能要求的控制器,再利用各顶点设计的反馈控制器得到具有凸多面体结构LPV容错控制器.仿真结果表明,LPV增益调度技术可以成功地应用于风力机系统的容错控制.  相似文献   

3.
随着对风力机效率和可靠性要求的提高,现代风力机不再如传统风力机那样一味追求高的产能。本文针对桨距执行器故障的风能转换系统具有非线性性和参数严重不确定性,提出了基于LPV增益调度的风能转换系统的主动容错控制方法,降低故障对机组动态特性的影响。基于LPV凸分解方法,将风能转化系统非线性模型化为具有凸多面体结构LPV模型,利用LMI技术对凸多面体各个顶点分别设计满足性能要求的控制器,再利用各顶点设计的反馈控制器得到具有凸多面体结构LPV容错控制器。仿真结果表明,LPV增益调度技术可以成功地应用于风能转换系统的容错控制,在有故障的情况下,仍能保持系统的稳定和良好的动态性能。  相似文献   

4.
在额定风速以下,风能转换系统需要通过控制发电机转速使风能的捕获率最大.根据风速的多时间尺度特性,建立风能转换系统的非线性机理模型,进一步得到其归一化误差的线性参数变化(LPV)系统模型;为获取最大风能捕获和减少机械振荡,在PI控制策略的基础上,利用基于LPV模型的增益调度控制器进行动态补偿.仿真结果表明:补偿后系统的功率系数和叶尖速比追踪其最优值的精度更高,鲁棒性更好,体现了更好的动态性能.  相似文献   

5.
贺琛  张小栋 《测控技术》2014,33(5):139-142
针对航空发动机健康监测系统对模型的高实时性和准确性要求,提出了一种应用递归最小二乘线性拟合建立压气机非线性过程中的线性变参数(LPV)模型的建模方法。该建模方法通过对模型参数的选择和顶点的选取,结合递归最小二乘法在不同顶点处拟合线性状态空间模型,根据LPV模型凸集特点得到非线性模型的LPV模型表达。最后应用法国ALSTOM公司提供的燃气涡轮模型进行了仿真实验验证,实现了实时非线性过程中模型稳定区域小于1%的动态建模误差,证明了方法的有效性和精确性。  相似文献   

6.
无人机线性参变(LPV)模型能准确描述其非线性动态特性,但初始建立的LPV模型阶数较高,控制过程计算量较大.为此,提出一种基于平衡截断的LPV模型降阶方法.首先给出LPV系统的适定性、稳定性和平衡实现的定义;然后,提出LPV模型的平衡截断降阶方法.针对无人机侧向系统LTI模型,通过多项式拟合来建立LPV模型,并实现模型降阶.仿真结果表明,降阶模型的阶跃响应满足输出响应的精度要求.  相似文献   

7.
对非线性动态系统采用速度线性化方法建立全局的线性模型,速度模型的线性参变(LPV)系统由输入和输出的信息来描述,而稳态信息由偏差来表示.针对速度模型的内模控制(IMC)不能有效消除线性参变模型稳态误差的问题,提出了一种改进结构的内模控制器,以实现零稳态误差.此方法可应用于具有强非线性pH值的中和过程,仿真结果表明该方法的有效性.  相似文献   

8.
本文提出一种基于模糊树模型的非线性系统的内模控制方法,该方法采用模糊树建立非线性系统的内部模型和逆模型.仿真结果表明模糊树方法建立的非线性系统内部模型和逆模型均具有较高的建模精度,所提内模控制方法对非线性系统具有较好的控制性能、较强的抗干扰能力和鲁棒性能.  相似文献   

9.
马宇  蔡远利 《控制与决策》2016,31(8):1468-1474

针对一类具有大工作区域和快时变特性的约束非线性系统, 采用多个线性参数时变(LPV) 模型近似描述原非线性系统. 对于各LPV 模型, 设计基于参数独立Lyapunov 函数的局部离线预测控制器. 构造各局部控制器间的切换策略, 在保证切换稳定性的同时, 使相互重叠的稳定域覆盖期望的工作区域. 仿真结果表明, 相比于已有的调度预测控制方法, 所提出的方法不仅能够保证控制输入在给定的约束范围内, 而且在局部控制器切换次数少的情况下, 获得良好的控制性能.

  相似文献   

10.
基于Preisach模型的迟滞系统建模与控制   总被引:2,自引:0,他引:2  
针对一种复杂的非线性系统一迟滞系统,研究了基于KP算子Preisach模型对迟滞系统进行建模的方法。利用Preisach模型与其边界线之间的映射关系,建立了容易在线更新的迟滞模型。基于Preisach模型进行迟滞非线性系统的控制,采用PID方法来控制一类带有未知非线性特性迟滞的单输入单输出非线性系统。对迟滞非线性系统的建模与控制进行的数值仿真研究结果表明,该迟滞非线性系统的建模和控制方法具有理论意义和应用价值。  相似文献   

11.
This paper studies the control of nonlinear Galerkin systems, which are an important class of nonlinear systems that arise in reduced-order modeling of infinite-dimensional systems. A novel approach is proposed in which a linear parameter-varying (LPV) model representing the Galerkin model is built, where the parameter variation is dictated by a specially designed adaptation scheme. The controller design is then carried out on the simpler LPV model, instead of dealing directly with the complicated nonlinear Galerkin system. An automatically scheduled H-infinity controller is designed using the LPV model, and it is proven that this controller will indeed achieve the desired stabilization when applied to the nonlinear Galerkin model. The approach is illustrated with an example on cavity flow control, where the design is seen to produce satisfactory results in suppressing unwanted oscillations.  相似文献   

12.
In this paper, a linear parameter‐varying (LPV)‐based model and robust gain‐scheduled structural proportion integral and derivative (PID) control design solution are proposed and applied on a bio‐inspired morphing wing unmanned aerial vehicle (UAV) for the morphing process. In the LPV model method, the authors propose an improved modeling method for LPV systems. The method combines partial linearization and function substitution. Using the proposed method, we can choose the varying parameters simply, thus creating a model that is more flexible and applicable. Then, a robust gain‐scheduled structural PID control design method is given by introducing a structural matrix to design a structural PID controller, which is more consistent with the structure of the PID controller used in practice and has a simpler structure than representative ones in the existing literature. The simulation results show that the developed LPV morphing UAV model is able to catch the response of the original nonlinear model with a smaller error than the existing Jacobian linearization method and the designed controller can maintain stable flights in practice with satisfactory robustness and performance.  相似文献   

13.
针对输入受限的高超声速飞行器强耦合、强非线性以及严重不确定性的特点,提出一种参数依赖滚动时域?∞控制(PD-RHHC)的方法.首先在考虑控制输入约束的条件下,引入参数依赖Lyapunov函数和松弛因子并提出了基于LMI优化的PD-RHHC;然后采用函数替换方法,结合张量积模型转换方法实现高超声速飞行器(HSV)纵向非线性弹性模型的LPV描述,并将PD-RHHC应用到高超声速飞行器纵向控制中,以实现HSV在大飞行包线内的机动飞行;最后通过仿真实验验证了所提出算法的有效性.  相似文献   

14.
This article investigates methods for decoupling multivariable linear parameter varying (LPV) systems and proposes a new interaction measure for decoupled proportional-integral (PI) feedback control design in LPV systems. The proposed approach seeks to benefit the multivariable control of multi-input multi-output (MIMO) systems with variable operating conditions, variable parameters or nonlinear behaviour. This method can improve the tracking performance and reduce the operating conditions variability of such systems with significant coupling in the system dynamics. We design MIMO decoupling feedback LPV controllers to address loop interaction effects. The proposed method uses a parameter-dependent static inversion or SVD decomposition of the system to minimise the effects of the off-diagonal terms in the MIMO system transfer function matrix. A new parameter-dependent interaction measure is introduced based on the SVD decomposition and static inversion which is subsequently utilised for tuning multi-loop PI controller gains. Numerical examples are presented to illustrate the validity of the proposed LPV decoupling methods, as well as the use of the proposed interaction measures for a decoupled multi-loop PI control design.  相似文献   

15.
A RBF-ARX modeling and robust model predictive control (MPC) approach to achieving output-tracking control of the nonlinear system with unknown steady-state knowledge is proposed. On the basis of the RBF-ARX model with considering the system time delay, a local linearization state-space model is obtained to represent the current behavior of the nonlinear system, and a polytopic uncertain linear parameter varying (LPV) state-space model is built to represent the future system’s nonlinear behavior. Based on the two models, a quasi-min–max MPC algorithm with constraint is designed for output-tracking control of the nonlinear system with unknown steady state knowledge. The optimization problem of the quasi-min–max MPC algorithm is finally converted to the convex linear matrix inequalities (LMIs) optimization problem. Closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and feasibility of the LMIs. Two examples, i.e. the modeling and control of a continuously stirred tank reactor (CSTR) and a two tank system demonstrate the effectiveness of the RBF-ARX modeling and robust MPC approach.  相似文献   

16.
For constrained linear parameter varying (LPV) systems, this survey comprehensively reviews the literatures on output feedback robust model predictive control (OFRMPC) over the past two decades from the aspects on motivations, main contributions, and the related techniques. According to the types of state observer systems and scheduling parameters of LPV systems, different kinds of OFRMPC approaches are summarized and compared. The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated. The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given. Key issues on OFRMPC optimizations for LPV systems are discussed. Furthermore, the future research directions on OFRMPC for LPV systems are suggested.   相似文献   

17.
《Journal of Process Control》2014,24(10):1538-1547
We present a multi-parametric model predictive controller (mpMPC) for discrete-time linear parameter-varying (LPV) systems based on the solution of the mpMPC problem for discrete-time linear time-invariant (LTI) systems. The control method yields a controller that adapts to parameter changes of the LPV system. This is accomplished by an add-on unit to the implementation of the mpMPC for LTI systems. No modification of the optimal mpMPC solution for LTI systems is needed. The mpMPC for LPV systems is entirely based on simple computational steps performed on-line. This control design method could improve the performance and robustness of a mpMPC for LPV systems with slowly varying parameters. We apply this method to process systems which suffer from slow variation of system parameters due, for example, to aging or degradation. As an illustrative example the reference tracking control problem of the hypnotic depth during intravenous anaesthesia is presented: the time varying system matrix mimics an external disturbance on the hypnotic depth. In this example the presented mpMPC for LPV systems shows a reduction of approximately 60% of the reference tracking error compared to the mpMPC for LTI systems.  相似文献   

18.
This paper proposes a robust output feedback model predictive control (MPC) scheme for linear parameter varying (LPV) systems based on a quasi-min–max algorithm. This approach involves an off-line design of a robust state observer for LPV systems using linear matrix inequality (LMI) and an on-line robust output feedback MPC algorithm using the estimated state. The proposed MPC method for LPV systems is applicable for a variety of systems with constraints and guarantees the robust stability of the output feedback systems. A numerical example for an LPV system subject to input constraints is given to demonstrate its effectiveness.  相似文献   

19.
In this paper, a practical procedure for linear parameter-varying (LPV) modeling and identification of a robotic manipulator is presented, which leads to a successful experimental implementation of an LPV gain-scheduled controller. A nonlinear dynamic model of a two-degrees-of-freedom manipulator containing all important terms is obtained and unknown parameters which are required to construct an LPV model are identified. An important tool for obtaining a model of complexity low enough to be suitable for controller synthesis is the principle-component-analysis-based technique of parameter set mapping. Since the resulting quasi-LPV model has a large number of affine scheduling parameters and a large overbounding, parameter set mapping is used to reduce conservatism and complexity in controller design by finding tighter parameter regions with fewer scheduling parameters. A sufficient a posteriori condition is derived to assess the stability of the resulting closed-loop system. To evaluate the applicability and efficiency of the approximated model, a polytopic LPV gain-scheduled controller is synthesized and implemented experimentally on an industrial robot for a trajectory tracking task. The experimental results illustrate that the designed LPV controller outperforms an independent joint PD controller in terms of tracking performance and achieves a slightly better accuracy than a model-based inverse dynamics controller, while having a simpler structure. Moreover, it is shown that the LPV controller is more robust against dynamic parameter uncertainty.  相似文献   

20.
A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented. Supported by the National Natural Science Foundation of China (Grant Nos. 60774015, 60825302, 60674018), the National High-Tech Research & Development Program of China (Grant No. 2007AA041403), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060248001), and partly by Shanghai Natural Science Foundation (Grant No. 07JC14016)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号