首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
The objective of this paper is to gain insight into finite element discretizations of shells using the basic shell mathematical model and, in particular, regarding the sources of “locking”. We briefly review the “basic shell mathematical model” and present a formulation of shell finite elements based on this model. These shell finite elements are equivalent to the widely-used continuum mechanics based shell finite elements. We consider a free hyperboloid shell problem, which is known to be difficult to solve accurately. Using a fine mesh of MITC9 elements based on the basic shell mathematical model, a detailed analysis is performed giving the distributions of all strain terms. A similar analysis using the MITC6 shell element shows why this element locks when the shell thickness is very small.  相似文献   

2.
《国际计算机数学杂志》2012,89(7):1506-1523
This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element spatial discretization with Scott-Vogelius mixed finite elements and semi-implicit backward Euler temporal discretization. We prove its unconditional stability and prove how the coarse mesh can be chosen so that optimal convergence can be achieved. We also provide numerical experiments to confirm the theory and demonstrate the effectiveness of the scheme on a test problem for MHD channel flow.  相似文献   

3.
4.
5.
The loadings on high temperature components are generally complex and the discreteness of the material strength is usually great. Therefore, the two-dimensional (2D) failure probability analysis model and the deterministic finite element method (DFEM) cannot be applied to evaluate the failure probability of asymmetrical three-dimensional (3D) components. To overcome the drawbacks of the 2D model and the DFEM, an efficient 3D stochastic finite element method (SFEM) is proposed in this paper. With this method, the failure probability of components subjected to complex loadings can be estimated by using the statistical analysis of the Von Mises stresses of element nodes. Meanwhile, ANSYS and MATLAB were employed to carry out 3D parametric modeling, solving and statistical analysis. The proposed method is efficient, as is verified for two cases, and it can also be easily applied in practical engineering.  相似文献   

6.
In 1926 E. Trefftz published a paper about a variational formulation which utilizes boundary integrals. Almost half a century later researchers became interested again in the ideas of Trefftz when the potential advantage of the Trefftz-method for an efficient use in numerical application on a computer was recognized. The concept of Trefftz can be used both for finite element and boundary element applications. A crucial ingredient of the Trefftz- method is a set of linearly independent trial functions which a priori satisfy the governing differential equations under consideration. In this paper an overview of some recent developments to construct trial functions for the Trefftz-method in a systematic manner is given. Using different types of approximation functions (singular or non-singular) we can obtain very accurate finite element and boundary element algorithms.  相似文献   

7.
This paper presents a mixed finite element model for the static analysis of laminated composite plates. The formulation is based on the least-squares variational principle, which is an alternative approach to the mixed weak form finite element models. The mixed least-squares finite element model considers the first-order shear deformation theory with generalized displacements and stress resultants as independent variables. Specifically, the mixed model is developed using equal-order C0 Lagrange interpolation functions of high p-levels along with full integration. This mixed least-squares-based discrete model yields a symmetric and positive-definite system of algebraic equations. The predictive capability of the proposed model is demonstrated by numerical examples of the static analysis of four laminated composite plates, with different boundary conditions and various side-to-thickness ratios. Particularly, the mixed least-squares model with high-order interpolation functions is shown to be insensitive to shear-locking.  相似文献   

8.
An axisymmetric finite element is developed which includes such features as orthotropic material properties, doubly curved geometry, and both the first and second order nonlinear stiffness terms. This element can be used to predict the equilibrium state of an axisymmetric shell structure with geometrically nonlinear large displacements. Small amplitude vibration analysis can then be performed based on this equilibrium state. The nonlinear path is predicted by using the self-correcting incremental procedure and any point on the path can be checked by using the Newton-Raphson iterative scheme. The present formulation and solution procedure are evaluated by analyzing a series of examples with results compared with alternative known solutions. Examples include: free vibration of an isotropic cylindrical shell, a conical frustum, and an orthotropic cylindrical shell; buckling of a cylindrical shell; large deflection of a clamped disk, a spherical cap, and a steel belted radial tire. The final example is a free vibration analysis of the inflated tire and the natural frequencies obtained compared well with published experimental data.  相似文献   

9.
A finite element method is proposed for investigating the general elastic multi-structure problem, where displacements on bodies, longitudinal displacements on plates, longitudinal displacements and rotational angles on rods are discretized using conforming linear elements, transverse displacements on plates and rods are discretized respectively using TRUNC elements and Hermite elements of third order, and the discrete generalized displacement fields in individual elastic members are coupled together by some feasible interface conditions. The unique solvability of the method is verified by the Lax–Milgram lemma after deriving generalized Korn’s inequalities in some nonconforming element spaces on elastic multi-structures. The quasi-optimal error estimate in the energy norm is also established. Some numerical results are presented at the end.  相似文献   

10.
The main idea of the paper is to apply the second order perturbation and stochastic second central moment technique to solve the homogenization problem. In order to determine the effective elasticity tensor, the prevailing computational methodology discussed in the literature so far was the Monte-Carlo simulation providing appropriate expected values and higher order probabilistic moments of the effective tensor components. The technique applied in this paper aims at significantly reducing the computational cost of the simulation without sacrificing the solution accuracy. The numerical example substantiates this claim in the case of a periodic fiber-reinforced plane strain composite with random fiber and matrix Young’s moduli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号