首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于非下采样Contourlet的图像融合   总被引:2,自引:0,他引:2  
张义飞 《微计算机信息》2007,23(27):283-284,119
本文提出了一种基于非下采样Contourlet变换的图像融合方法。与Contourlet变换相比,非下采样Contourlet变换不仅具有多尺度、多方向特性,同时还具备平移不变性。文中针对非下采样Contourlet变换的特点和人眼的视觉特性,在较粗尺度采用对比度融合规则,较细尺度采用局部方差最大化规则,低频采用平均规则。该方法不但继承了Contourlet变换对方向信息融合的优点,同时又有效地去除了Contourlet变换中出现的吉布斯现象。仿真实验表明,本文方法优于Contourlet变换以及现有的小波,非下采样小波等方法。  相似文献   

2.
为提高基于内容的图像检索系统中纹理特征提取的有效性,提出了又一种纹理图像检索方法。该方法利用非下采样Contourlet变换对图像进行分解,提取不同子带和不同方向变换系数矩阵的均值和方差为特征向量,作为数据库中纹理图像的索引,并利用两种不同的相似度函数计算图像之间的相似度,建立了一套基于示例查询图像的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比,该方法不仅能降低特征向量维数,而且能取得更高的检索准确率和检索速度。  相似文献   

3.
基于非下采样Contourlet和扩散的图像去噪   总被引:1,自引:0,他引:1  
陈建军  田逢春  邱宇  徐鑫 《计算机工程》2010,36(14):185-186
根据非下采样Contourlet变换同时具有多尺度、多分辨分析和平移不变的性质,提出一种基于非下采样Contourlet变换和P-Laplace扩散相结合的图像去噪方法。该方法不但继承了非下采样Contourlet 变换捕捉边缘信息的能力,而且在P-Laplace扩散去噪时具有保持图像边缘信息的优点。实验结果表明该方法具有较好的图像去噪效果。  相似文献   

4.
依据非下采样Contourlet分解系数与其父系数之间的相关性,给出非高斯双变量分布模型,并基于该模型提出一种新的非下采样Contourlet变换图像分割方法。用合成纹理图像和实际图像进行仿真实验,并与小波域隐马尔可夫树模型分割及Contourlet域隐马尔可夫树模型分割等方法进行了比较,实验结果表明,在大多数情况下,该算法分割结果要好于相比较的方法,在边缘特征方面保持了良好的视觉效果,并且模型的训练简单快速。  相似文献   

5.
基于对偶树复小波和MRF模型的纹理图像分割   总被引:1,自引:0,他引:1  
基于对偶树复小波(DT-CWT)和马尔可夫随机场(MRF)模型提出了一种监督纹理图像分割算法,算法包括两个步骤,首先对复小波变换系数进行较为精确的建模,提取其一阶统计信息作为纹理特征,综合多个尺度的信息,基于极大似然标准进行初始分割;其次,将初始分割结果用MRF模型表示,基于贝叶斯最大后验(MAP)融合初始分割结果,得到最终的分割结果。算法应用于合成纹理图像和实际图像得到了良好的结果,对比实验表明算法所采用的纹理特征的提取方法、小波变换方式、用MRF模型来建模标号等是算法简洁有效的基础。  相似文献   

6.
非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)采用非抽样金字塔结构和非抽样方向滤波器组构成,具有Contourlet变换所不具备的平移不变性、较高冗余度等优良特性,而且能够克服伪吉布斯现象。图像经过非下采样Contourlet变换后分解成多尺度、多方向的细节信息,这些细节信息代表了图像不同频带不同方向的特征,这就简化了系数之间的关系。基于学习的超分辨率重建算法具有整体的预测性,将非下采样Contourlet变换和基于学习的算法相结合,在一定程度上提高训练精度。针对指纹图像的实验证明该算法具有良好的性能,重建的图像纹理性细节信息较好,基本保持了原指纹图像的特征点,更接近于原始的高分辨率图像。  相似文献   

7.
基于非下采样Contourlet变换的图像边缘检测   总被引:1,自引:0,他引:1  
以非下采样Contourlet变换为基础,充分利用了该变换的尺度相关性以及各个尺度方向子带系数的方向性,提出了一种新的图像边缘检测的方法。通过实验,验证了新方法可以更好地把握图像的曲线或直线状边缘特征,与基于小波模的极大值边缘检测方法相比,效果更好。  相似文献   

8.
非下采样Contourlet变换自适应图像去噪方法   总被引:1,自引:1,他引:0  
提出了一种基于非下采样Contourlet变换的自适应图像去噪方法。首先对噪声图像进行非下采样Contourlet变换,得到各个尺度各个方向子带的系数,再根据该系数的能量自适应地调整去噪阈值。实验表明,与Contourlet多尺度阈值去噪、Contourlet自适应阈值去噪相比,该方法在保留图像边缘细节的同时,能提高图像的PSNR值,减少了Gibbs现象。  相似文献   

9.
针对传统小波域马尔可夫随机场图像分割算法的纹理图像分割能力的不足,提出一种将非下采样Brushlet变换和马尔可夫随机场相结合的纹理图像分割方法。用非下采样Brushlet变换作为图像分割的特征场,有效地提取纹理图像中的高维奇异信息;利用高斯马尔可夫模型提取特征场的参数,考察图像中的光谱信息以及像素点的空间相关性对分割结果的影响。实验表明,本文算法可以有效地实现纹理图像分割,在检测纹理方向信息和区域一致性上较传统算法有较大的提高。  相似文献   

10.
水下环境复杂多变,导致声呐技术成像后的图像质量差,影响目标识别。为此,提出一种基于Contourlet域下多尺度高斯马尔可夫随机场(GMRF)模型的水平集声呐图像分割算法。采用Contourlet变换及逆变换获取声呐图像各尺度层下的纹理特征,通过GMRF对各层纹理特征建模,以描述局部结构空间信息并降低对噪声的敏感度。根据各层纹理特征模型,对声呐图像进行由粗到细尺度的水平集分割以得到分割结果。实验结果表明,该算法在不同声呐图像中的分割准确度超过90%,优于Otsu算法,且具有较低的复杂度和较强的鲁棒性。  相似文献   

11.
由于传统图像分割方法对噪声的敏感性和检测结果的不连续性等问题导致图像分割精度较低,提出一种基于多层马尔科夫随机场模型融合的图像分割方法。首先分别通过模糊C均值聚类(FCM)方法和马尔科夫随机场(MRF)方法得到两个分割效果较差的图像,随后运用多层马尔科夫随机场模型的融合特性将两个传统方法得到的分割结果进行融合。该方法运用多层马尔科夫随机场融合方法引入邻域内像素间相关性和各层间的联系,并且在实验中得出与两个传统方法相比较更细致和精确的结果。实验结果表明,多层马尔科夫随机场模型的融合方法可以将两个传统分割方法的结果较好地融合,并且得到更加精确的结果。  相似文献   

12.
眼底图像血管分割是医用图像分割中较为复杂的一种,在目前的研究中存在分割精度低、效率不高等问题。提出基于马尔可夫随机场的眼底图像血管分割算法,根据眼底图像的特点构建马尔可夫随机场模型,提取H通道作为特征场参数,利用最大后验准则完成标号场更新,最终实现对视网膜血管的分割。算法通过眼底图像数据库DRIVE进行测试,结果表明:该算法平均准确度为0.954 6,平均敏感度为0.899 9,平均特异度为0.957 1,具有很好的分割效果,且运行稳定,计算方便快捷,具有鲁棒性。  相似文献   

13.
基于最优小波包基的纹理自适应概率模型通过优选小波包基来区分不同纹理,具有纹理描述更准确的优点。研究基于纹理自适应描述的邻域分割法,通过实验分析了纹理概率模型和邻域分割法对分割效果影响的主次关系。实验结果表明邻域分割法是分割取得好效果(分割错误率低于1.34%)的主要影响因素,概率模型对分割效果的作用是次要因素。这一结论的得出将有利于对该方法的改进。  相似文献   

14.
提出一种采用轮廓波变换和各向异性扩散的图像去噪模型。利用轮廓波变换较好的稀疏性、多方向性等特点,通过对噪声图像经轮廓波变换后的不同尺度上的子带图像进行扩散,并采用P范数方法在轮廓波域计算子带图像的梯度阈值,实现建立在图像精细分析基础上的新的各向异性扩散模型。仿真结果表明,提出的扩散模型较好地抑制了传统各向异性扩散模型出现的边缘模糊效应,在对图像去噪的同时保留了更多的边缘、纹理等细节信息。  相似文献   

15.
提出了一种新的不完全树结构小波变换用于纹理特征提取,给出了一种一人类视觉过程相一致的多分辨率多通道纹理分析方法,它由:1)特征提取:使用不完全树结构小波变换抽取纹理特征;2)基于模糊神经 网络的特征粗分类:①基于样本分布密度的模糊Kohonen聚类网络权植初始化,②使用缩减的特征向量对网络进行训练,得到粗分割结果;3)细化粗分割结果等几部分构成。实验结果证明了其有效性。  相似文献   

16.
基于非向下采样Contourlet变换的多聚焦图像融合   总被引:1,自引:0,他引:1  
近年来图像融合已成为图像处理的一个热点,提出了一种基于非向下采样Contourlet变换NSCT(Nonsubsampled Contour-let transform)的多聚焦图像融合方法。首先对两幅源图像分别进行非向下采样轮廓波变换得到一个低频子带和多个高频方向子带,然后对高低频子带分别采取方向对比度的区域均值和局部熵的融合规则来选取相应的系数,最终通过反变换得到融合图像。实验中,与离散小波a、trous小波变换、NSCT的简单方法进行了比较,结果表明该方法的融合效果最好。  相似文献   

17.
基于分形和分水岭的图像分割方法   总被引:4,自引:0,他引:4  
图像分割是一种重要的图像处理技术,也是计算机视觉领域低层次视觉中的主要问题,同时它又是一个经典难题.提出了结合分水岭分割与图像分形维数的一种新方法用于对自然背景下人造目标的提取.实验结果证明,该方法能有效抑制自然背景,并提取出人造目标的轮廓.  相似文献   

18.
基于小波变换的图像分割研究   总被引:4,自引:0,他引:4  
基于多分辨率分析的图像分割技术是当前图像处理的重要内容,提出了小波变换多分辨率分析方法与改进分水岭分割算法相结合的综合分割方法.此方法利用逐层影射和小波反变换可以得到高分辨率图像,与在原始图像上直接进行传统分水岭分割算法相比较,该方法的实验结果能有效地减少分水岭算法图像过分割现象,经实验证明了该方法的有效性和实用性.  相似文献   

19.
为了使插值后的遥感图像在尽可能保持原图像信息的同时,显著提高图像空间分辨率,提出一种基于第二代Contourlet变换的遥感图像三次插值算法。在对遥感图像做第二代Contourlet分解基础上,对低分辨率频带中的高频分量做双线性插值变换,使其相似于高分辨率频带中的高频分量。最后,通过反变换得到比原始图像分辨率高的插值图像。实验结果表明,该方法插值效果优于双三次插值算法、小波双三次插值和第一代Contourlet双三次插值算法。  相似文献   

20.
基于改进的FCM的人脑MR图像分割   总被引:2,自引:0,他引:2  
传统模糊C均值广泛应用于图像分割,它是一种经典的模棚聚类分析方法,但是FCM算法对于初始值的选择都是采取随机的方法,强烈依赖于初始值的选择,收敛结果容易陷入局部最小值,并且FCM并没有考虑图像的空间信息,因而对噪声十分敏感。提出改进的FCM方法,采用新的方法确定初始值的选择,然后考虑空间信息,利用Gibbs随机场的性质引入先验邻域约束信息,重新确定像素的模糊隶属度值,同时再进一步地调整距离矩阵。通过实验可以表明,此改进的方法具有很好的分割效果,同时对噪声具有较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号