首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric tensors (i.e., forms) on triangulations. Symmetric 2‐tensors, while crucial in the definition of inner products and elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a representation of arbitrary 2‐tensor fields on triangle meshes. We leverage a coordinate‐free decomposition of continuous 2‐tensors in the plane to construct a finite‐dimensional encoding of tensor fields through scalar values on oriented simplices of a manifold triangulation. We also provide closed‐form expressions of pairing, inner product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative and a discrete Lie bracket. Our approach extends discrete/finite‐element exterior calculus, recovers familiar operators such as the weighted Laplacian operator, and defines discrete notions of divergence‐free, curl‐free, and traceless tensors–thus offering a numerical framework for discrete tensor calculus on triangulations. We finally demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the computation of anisotropic geodesic distances on discrete surfaces.  相似文献   

2.
机器学习、模式识别、数据挖掘等领域中的输入模式常常是高阶张量.文中首先从向量模式推广到张量模式,提出弹球支持张量机模型.然后给出求解弹球支持张量机模型的序贯最小优化算法(SMO).为了保持张量的自然结构信息,同时加速训练过程,采用张量的秩-1分解代替原始张量计算张量内积.在向量数据和张量数据上进行的大量实验表明:对于向量数据,相比经典的积极集法,SMO的计算速度更快;对于张量数据,相比弹球支持向量机,弹球支持张量机具有更快的训练速度和更好的泛化能力.  相似文献   

3.
This paper is concerned with the extraction of the surface topology of tensor fields on 2D triangulated manifolds embedded in 3D. In scientific visualization topology is a meaningful instrument to get a hold on the structure of a given dataset. Due to the discontinuity of tensor fields on a piecewise planar domain, standard topology extraction methods result in an incomplete topological skeleton. In particular with regard to the high computational costs of the extraction this is not satisfactory. This paper provides a method for topology extraction of tensor fields that leads to complete results. The core idea is to include the locations of discontinuity into the topological analysis. For this purpose the model of continuous transition bridges is introduced, which allows to capture the entire topology on the discontinuous field. The proposed method is applied to piecewise linear three‐dimensional tensor fields defined on the vertices of the triangulation and for piecewise constant two or three‐dimensional tensor fields given per triangle, e.g. rate of strain tensors of piecewise linear flow fields.  相似文献   

4.
Tensors provide a powerful language to describe physical phenomena. Consequently, they have a long tradition in physics and appear in various application areas, either as the final result of simulations or as intermediate product. Due to their complexity, tensors are hard to interpret. This motivates the development of well‐conceived visualization methods. As a sub‐branch of scientific visualization, tensor field visualization has been especially pushed forward by diffusion tensor imaging. In this review, we focus on second‐order tensors that are not diffusion tensors. Until now, these tensors, which might be neither positive‐definite nor symmetric, are under‐represented in visualization and existing visualization tools are often not appropriate for these tensors. Hence, we discuss the strengths and limitations of existing methods when dealing with such tensors as well as challenges introduced by them. The goal of this paper is to reveal the importance of the field and to encourage the development of new visualization methods for tensors from various application fields.  相似文献   

5.
Vortices are important features in vector fields that show a swirling behavior around a common core. The concept of a vortex core line describes the center of this swirling behavior. In this work, we examine the extension of this concept to 3D second‐order tensor fields. Here, a behavior similar to vortices in vector fields can be observed for trajectories of the eigenvectors. Vortex core lines in vector fields were defined by Sujudi and Haimes to be the locations where stream lines are parallel to an eigenvector of the Jacobian. We show that a similar criterion applied to the eigenvector trajectories of a tensor field yields structurally stable lines that we call tensor core lines. We provide a formal definition of these structures and examine their mathematical properties. We also present a numerical algorithm for extracting tensor core lines in piecewise linear tensor fields. We find all intersections of tensor core lines with the faces of a dataset using a simple and robust root finding algorithm. Applying this algorithm to tensor fields obtained from structural mechanics simulations shows that it is able to effectively detect and visualize regions of rotational or hyperbolic behavior of eigenvector trajectories.  相似文献   

6.
This paper addresses several issues related to topological analysis of 3D second order symmetric tensor fields. First, we show that the degenerate features in such data sets form stable topological lines rather than points, as previously thought. Second, the paper presents two different methods for extracting these features by identifying the individual points on these lines and connecting them. Third, this paper proposes an analytical form of obtaining tangents at the degenerate points along these topological lines. The tangents are derived from a Hessian factorization technique on the tensor discriminant and leads to a fast and stable solution. Together, these three advances allow us to extract the backbone topological lines that form the basis for topological analysis of tensor fields.  相似文献   

7.
Numerical simulations and experimental observations are inherently imprecise. Therefore, most vector fields of interest in scientific visualization are known only up to an error. In such cases, some topological features, especially those not stable enough, may be artifacts of the imprecision of the input. This paper introduces a technique to compute topological features of user‐prescribed stability with respect to perturbation of the input vector field. In order to make our approach simple and efficient, we develop our algorithms for the case of piecewise constant (PC) vector fields. Our approach is based on a super‐transition graph, a common graph representation of all PC vector fields whose vector value in a mesh triangle is contained in a convex set of vectors associated with that triangle. The graph is used to compute a Morse decomposition that is coarse enough to be correct for all vector fields satisfying the constraint. Apart from computing stable Morse decompositions, our technique can also be used to estimate the stability of Morse sets with respect to perturbation of the vector field or to compute topological features of continuous vector fields using the PC framework.  相似文献   

8.
As an efficient technique for anti-counterfeiting, holographic diffraction labels has been widely applied to various fields. Due to their unique feature, traditional image recognition algorithms are not ideal for the holographic diffraction label recognition. Since a tensor preserves the spatiotemporal features of an original sample in the process of feature extraction, in this paper we propose a new holographic diffraction label recognition algorithm that combines two tensor features. The HSV (Hue Saturation Value) tensor and the HOG (Histogram of Oriented Gradient) tensor are used to represent the color information and gradient information of holographic diffraction label, respectively. Meanwhile, the tensor decomposition is performed by high order singular value decomposition, and tensor decomposition matrices are obtained. Taking into consideration of the different recognition capabilities of decomposition matrices, we design a decomposition matrix similarity fusion strategy using a typical correlation analysis algorithm and projection from similarity vectors of different decomposition matrices to the PCA (Principal Component Analysis) sub-space , then, the sub-space performs KNN (K-Nearest Neighbors) classification is performed. The effectiveness of our fusion strategy is verified by experiments. Our double tensor recognition algorithm complements the recognition capability of different tensors to produce better recognition performance for the holographic diffraction label system.  相似文献   

9.
Interactive tensor field design and visualization on surfaces   总被引:1,自引:0,他引:1  
Designing tensor fields in the plane and on surfaces is a necessary task in many graphics applications, such as painterly rendering, pen-and-ink sketching of smooth surfaces, and anisotropic remeshing. In this article, we present an interactive design system that allows a user to create a wide variety of symmetric tensor fields over 3D surfaces either from scratch or by modifying a meaningful input tensor field such as the curvature tensor. Our system converts each user specification into a basis tensor field and combines them with the input field to make an initial tensor field. However, such a field often contains unwanted degenerate points which cannot always be eliminated due to topological constraints of the underlying surface. To reduce the artifacts caused by these degenerate points, our system allows the user to move a degenerate point or to cancel a pair of degenerate points that have opposite tensor indices. These operations provide control over the number and location of the degenerate points in the field. We observe that a tensor field can be locally converted into a vector field so that there is a one-to-one correspondence between the set of degenerate points in the tensor field and the set of singularities in the vector field. This conversion allows us to effectively perform degenerate point pair cancellation and movement by using similar operations for vector fields. In addition, we adapt the image-based flow visualization technique to tensor fields, therefore allowing interactive display of tensor fields on surfaces. We demonstrate the capabilities of our tensor field design system with painterly rendering, pen-and-ink sketching of surfaces, and anisotropic remeshing  相似文献   

10.
Tensors model a wide range of physical phenomena. While symmetric tensors are sufficient for some applications (such as diffusion), asymmetric tensors are required, for example, to describe differential properties of fluid flow. Glyphs permit inspecting individual tensor values, but existing tensor glyphs are fully defined only for symmetric tensors. We propose a glyph to visualize asymmetric second‐order two‐dimensional tensors. The glyph includes visual encoding for physically significant attributes of the tensor, including rotation, anisotropic stretching, and isotropic dilation. Our glyph design conserves the symmetry and continuity properties of the underlying tensor, in that transformations of a tensor (such as rotation or negation) correspond to analogous transformations of the glyph. We show results with synthetic data from computational fluid dynamics.  相似文献   

11.
12.
In this paper, a decomposition method for binary tensors, generalized multi-linear model for principal component analysis (GMLPCA) is proposed. To the best of our knowledge at present there is no other principled systematic framework for decomposition or topographic mapping of binary tensors. In the model formulation, we constrain the natural parameters of the Bernoulli distributions for each tensor element to lie in a sub-space spanned by a reduced set of basis (principal) tensors. We evaluate and compare the proposed GMLPCA technique with existing real-valued tensor decomposition methods in two scenarios: (1) in a series of controlled experiments involving synthetic data; (2) on a real-world biological dataset of DNA sub-sequences from different functional regions, with sequences represented by binary tensors. The experiments suggest that the GMLPCA model is better suited for modelling binary tensors than its real-valued counterparts. Furthermore, we extended our GMLPCA model to the semi-supervised setting by forcing the model to search for a natural parameter subspace that represents a user-specified compromise between the modelling quality and the degree of class separation.  相似文献   

13.
Measured data often incorporates some amount of uncertainty, which is generally modeled as a distribution of possible samples. In this paper, we consider second‐order symmetric tensors with uncertainty. In the 3D case, this means the tensor data consists of 6 coefficients – uncertainty, however, is encoded by 21 coefficients assuming a multivariate Gaussian distribution as model. The high dimension makes the direct visualization of tensor data with uncertainty a difficult problem, which was until now unsolved. The contribution of this paper consists in the design of glyphs for uncertain second‐order symmetric tensors in 2D and 3D. The construction consists of a standard glyph for the mean tensor that is augmented by a scalar field that represents uncertainty. We show that this scalar field and therefore the displayed glyph encode the uncertainty comprehensively, i.e., there exists a bijective map between the glyph and the parameters of the distribution. Our approach can extend several classes of existing glyphs for symmetric tensors to additionally encode uncertainty and therefore provides a possible foundation for further uncertain tensor glyph design. For demonstration, we choose the well‐known superquadric glyphs, and we show that the uncertainty visualization satisfies all their design constraints.  相似文献   

14.
15.
We introduce a versatile framework for characterizing and extracting salient structures in three-dimensional symmetric second-order tensor fields. The key insight is that degenerate lines in tensor fields, as defined by the standard topological approach, are exactly crease (ridge and valley) lines of a particular tensor invariant called mode. This reformulation allows us to apply well-studied approaches from scientific visualization or computer vision to the extraction of topological lines in tensor fields. More generally, this main result suggests that other tensor invariants, such as anisotropy measures like fractional anisotropy (FA), can be used in the same framework in lieu of mode to identify important structural properties in tensor fields. Our implementation addresses the specific challenge posed by the non-linearity of the considered scalar measures and by the smoothness requirement of the crease manifold computation. We use a combination of smooth reconstruction kernels and adaptive refinement strategy that automatically adjust the resolution of the analysis to the spatial variation of the considered quantities. Together, these improvements allow for the robust application of existing ridge line extraction algorithms in the tensor context of our problem. Results are proposed for a diffusion tensor MRI dataset, and for a benchmark stress tensor field used in engineering research.  相似文献   

16.
17.
This paper proposes a new method to estimate the crowd density based on the combination of higher-order singular value decomposition (HOSVD) and support vector machine (SVM). We first construct a higher-order tensor with all the images in the training set, and apply HOSVD to obtain a small set of orthonormal basis tensors that can span the principal subspace for all the training images. The coordinate, which best describes an image under this set of orthonormal basis tensors, is computed as the density character vector. Furthermore, a multi-class SVM classifier is designed to classify the extracted density character vectors into different density levels. Compared with traditional methods, we can make significant improvements to crowd density estimation. The experimental results show that the accuracy of our method achieves 96.33%, in which the misclassified images are all concentrated in their neighboring categories.  相似文献   

18.
Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.  相似文献   

19.
A Riemannian Framework for Tensor Computing   总被引:22,自引:0,他引:22  
Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc. We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve.  相似文献   

20.
Matrix-valued data sets arise in a number of applications including diffusion tensor magnetic resonance imaging (DT-MRI) and physical measurements of anisotropic behaviour. Consequently, there arises the need to filter and segment such tensor fields. In order to detect edge-like structures in tensor fields, we first generalise Di Zenzo’s concept of a structure tensor for vector-valued images to tensor-valued data. This structure tensor allows us to extend scalar-valued mean curvature motion and self-snakes to the tensor setting. We present both two-dimensional and three-dimensional formulations, and we prove that these filters maintain positive semidefiniteness if the initial matrix data are positive semidefinite. We give an interpretation of tensorial mean curvature motion as a process for which the corresponding curve evolution of each generalised level line is the gradient descent of its total length. Moreover, we propose a geodesic active contour model for segmenting tensor fields and interpret it as a minimiser of a suitable energy functional with a metric induced by the tensor image. Since tensorial active contours incorporate information from all channels, they give a contour representation that is highly robust under noise. Experiments on three-dimensional DT-MRI data and an indefinite tensor field from fluid dynamics show that the proposed methods inherit the essential properties of their scalar-valued counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号