首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The explosive growth in integration technology and the parallel nature of rasterization‐based graphics APIs (Application Programming Interface) changed the panorama of consumer‐level graphics: today, GPUs (Graphics Processing Units) are cheap, fast and ubiquitous. We show how to harness the computational power of GPUs and solve the incompressible Navier‐Stokes fluid equations significantly faster (more than one order of magnitude in average) than on CPU solvers of comparable cost. While past approaches typically used Stam's implicit solver, we use a variation of SMAC (Simplified Marker and Cell). SMAC is widely used in engineering applications, where experimental reproducibility is essential. Thus, we show that the GPU is a viable and affordable processor for scientific applications. Our solver works with general rectangular domains (possibly with obstacles), implements a variety of boundary conditions and incorporates energy transport through the traditional Boussinesq approximation. Finally, we discuss the implications of our solver in light of future GPU features, and possible extensions such as three‐dimensional domains and free‐boundary problems.  相似文献   

2.
We present an implementation approach for Marching Cubes (MC) on graphics hardware for OpenGL 2.0 or comparable graphics APIs. It currently outperforms all other known graphics processing units (GPU)‐based iso‐surface extraction algorithms in direct rendering for sparse or large volumes, even those using the recently introduced geometry shader (GS) capabilites. To achieve this, we outfit the Histogram Pyramid (HP) algorithm, previously only used in GPU data compaction, with the capability for arbitrary data expansion. After reformulation of MC as a data compaction and expansion process, the HP algorithm becomes the core of a highly efficient and interactive MC implementation. For graphics hardware lacking GSs, such as mobile GPUs, the concept of HP data expansion is easily generalized, opening new application domains in mobile visual computing. Further, to serve recent developments, we present how the HP can be implemented in the parallel programming language CUDA (compute unified device architecture), by using a novel 1D chunk/layer construction.  相似文献   

3.
Proximity queries such as closest point computation and collision detection have many applications in computer graphics, including computer animation, physics‐based modelling, augmented and virtual reality. We present efficient algorithms for proximity queries between a closed rigid object and an arbitrary, possibly deformable, polygonal mesh. Using graphics hardware to densely sample the distance field of the rigid object over the arbitrary mesh, we compute minimal proximity and collision response information on the graphics processing unit (GPU) using blending and depth buffering, as well as parallel reduction techniques, thus minimizing the readback bottleneck. Although limited to image‐space resolution, our algorithm provides high and steady performance when compared with other similar algorithms. Proximity queries between arbitrary meshes with hundreds of thousands of triangles and detailed distance fields of rigid objects are computed in a few milliseconds at high‐sampling resolution, even in situations with large overlap.  相似文献   

4.
Survey of Real-Time Rendering Techniques for Crowds   总被引:1,自引:0,他引:1  
Real‐time rendering of photo‐realistic humans is considerably outside the scope of current consumer‐level computer hardware. There are many techniques, which attempt to bridge the gap between what is desired and what is possible. This paper aims to give an overview of the techniques designed to alter the complexity of the model's geometry (level of detail), or replace it with a flat image (visual impostor) and to improve the lighting model (lighting and shadows). Recent years have shown a boom in the power and availability of consumer‐level programmable graphics processors, thus techniques that make use of these features are coming to the forefront.  相似文献   

5.
Because of its versatility, speed and robustness, shadow mapping has always been a popular algorithm for fast hard shadow generation since its introduction in 1978, first for offline film productions and later increasingly so in real‐time graphics. So it is not surprising that recent years have seen an explosion in the number of shadow map related publications. Because of the abundance of articles on the topic, it has become very hard for practitioners and researchers to select a suitable shadow algorithm, and therefore many applications miss out on the latest high‐quality shadow generation approaches. The goal of this survey is to rectify this situation by providing a detailed overview of this field. We show a detailed analysis of shadow mapping errors and derive a comprehensive classification of the existing methods. We discuss the most influential algorithms, consider their benefits and shortcomings and thereby provide the readers with the means to choose the shadow algorithm best suited to their needs.  相似文献   

6.
A sampled object representation (SOR) defines a graphical model using data obtained from a sampling process, which takes a collection of samples at discrete positions in space in order to capture certain geometrical and physical properties of one or more objects of interest. Examples of SORs include images, videos, volume datasets and point datasets. Unlike many commonly used data representations in computer graphics, SORs lack in geometrical, topological and semantic information, which is much needed for controlling deformation and animation. Hence it poses a significant scientific and technical challenge to develop deformation and animation methods that operate upon SORs. Such methods can enable computer graphics and computer animation to benefit enormously from the advances of digital imaging technology. In this state of the art report, we survey a wide range of techniques that have been developed for manipulating, deforming and animating SORs. We consider a collection of elementary operations for manipulating SORs, which can serve as building blocks of deformation and animation techniques. We examine a collection of techniques that are designed to transform the geometry shape of deformable objects in sampled representations and pay particular attention to their deployment in surgical simulation. We review a collection of techniques for animating digital characters in SORs, focusing on recent developments in volume animation.  相似文献   

7.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

8.
In recent years, a collection of new techniques which deal with video as input data, emerged in computer graphics and visualization. In this survey, we report the state of the art in video‐based graphics and video visualization. We provide a review of techniques for making photo‐realistic or artistic computer‐generated imagery from videos, as well as methods for creating summary and/or abstract visual representations to reveal important features and events in videos. We provide a new taxonomy to categorize the concepts and techniques in this newly emerged body of knowledge. To support this review, we also give a concise overview of the major advances in automated video analysis, as some techniques in this field (e.g. feature extraction, detection, tracking and so on) have been featured in video‐based modelling and rendering pipelines for graphics and visualization.  相似文献   

9.
We propose two hardware mechanisms to decrease energy consumption on massively parallel graphics processors for ray tracing. First, we use a streaming data model and configure part of the L2 cache into a ray stream memory to enable efficient data processing through ray reordering. This increases L1 hit rates and reduces off‐chip memory energy substantially through better management of off‐chip memory access patterns. To evaluate this model, we augment our architectural simulator with a detailed memory system simulation that includes accurate control, timing and power models for memory controllers and off‐chip dynamic random‐access memory . These details change the results significantly over previous simulations that used a simpler model of off‐chip memory, indicating that this type of memory system simulation is important for realistic simulations that involve external memory. Secondly, we employ reconfigurable special‐purpose pipelines that are constructed dynamically under program control. These pipelines use shared execution units that can be configured to support the common compute kernels that are the foundation of the ray tracing algorithm. This reduces the overhead incurred by on‐chip memory and register accesses. These two synergistic features yield a ray tracing architecture that reduces energy by optimizing both on‐chip and off‐chip memory activity when compared to a more traditional approach.  相似文献   

10.
We present an efficient Graphics Processing Unit GPU‐based implementation of the Projected Tetrahedra (PT) algorithm. By reducing most of the CPU–GPU data transfer, the algorithm achieves interactive frame rates (up to 2.0 M Tets/s) on current graphics hardware. Since no topology information is stored, it requires substantially less memory than recent interactive ray casting approaches. The method uses a two‐pass GPU approach with two fragment shaders. This work includes extended volume inspection capabilities by supporting interactive transfer function editing and isosurface highlighting using a Phong illumination model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号