首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider resource allocation scheduling with learning effect in which the processing time of a job is a function of its position in a sequence and its resource allocation. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. We concentrate on two goals separately, namely, minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost; minimizing a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. We analyse the problem with two different processing time functions. For each combination of these, we provide a polynomial time algorithm to find the optimal job sequence and resource allocation.  相似文献   

2.
We consider a two-machine flowshop scheduling problem with identical jobs. Each of these jobs has three operations, where the first operation must be performed on the first machine, the second operation must be performed on the second machine, and the third operation (named as flexible operation) can be performed on either machine but cannot be preempted. Highly flexible CNC machines are capable of performing different operations. Furthermore, the processing times on these machines can be changed easily in albeit of higher manufacturing cost by adjusting the machining parameters like the speed and/or feed rate of the machine. The overall problem is to determine the assignment of the flexible operations to the machines and processing times for each operation to minimize the total manufacturing cost and makespan simultaneously. For such a bicriteria problem, there is no unique optimum but a set of nondominated solutions. Using ?-constraint?-constraint approach, the problem could be transformed to be minimizing total manufacturing cost for a given upper limit on the makespan. The resulting single criterion problem can be reformulated as a mixed integer nonlinear problem with a set of linear constraints. We use this formulation to optimally solve small instances of the problem while a heuristic procedure is constructed to solve larger instances in a reasonable time.  相似文献   

3.
Single-machine and flowshop scheduling with a general learning effect model   总被引:3,自引:0,他引:3  
Learning effects in scheduling problems have received growing attention recently. Biskup [Biskup, D. (2008). A state-of-the-art review on scheduling with learning effect. European Journal of Operational Research, 188, 315–329] classified the learning effect scheduling models into two diverse approaches. The position-based learning model seems to be a realistic assumption for the case that the actual processing of the job is mainly machine driven, while the sum-of-processing-time-based learning model takes into account the experience the workers gain from producing the jobs. In this paper, we propose a learning model which considers both the machine and human learning effects simultaneously. We first show that the position-based learning and the sum-of-processing-time-based learning models in the literature are special cases of the proposed model. Moreover, we present the solution procedures for some single-machine and some flowshop problems.  相似文献   

4.
In this note, we show that the main results in the two papers [C.C. Wu, W.C. Lee, Single-machine and flowshop scheduling with a general learning effect model, Computers and Industrial Engineering 56 (2009) 1553-1558, W.C. Lee, C.C. Wu, Some single-machine and m-machine flowshop scheduling problems with learning considerations, Information Sciences 179 (2009) 3885-3892] are incorrect.  相似文献   

5.
In this paper, we study a coordinated production–transportation scheduling problem in a two-machine flowshop environment where a single transporter may carry several jobs simultaneously as a batch between the machines. Each job has its own physical-space requirement while being loaded into the transporter. The goal is to minimize the makespan. For the jobs with the same size of physical space during transportation, we present a heuristic algorithm with an absolute worst-case ratio of 2 and a polynomial-time optimal algorithm for a special case with given job sequence. For the jobs having different size of physical storage space, a heuristic algorithm is constructed with an absolute worst-case ratio of 7/3 and asymptotic worst-case ratio of 20/9. Computational experiments demonstrate that the two heuristic algorithms developed are capable of generating near-optimal solutions quickly.  相似文献   

6.
Scheduling with learning effect has drawn many researchers’ attention since Biskup [D. Biskup, Single-machine scheduling with learning considerations, European Journal of Opterational Research 115 (1999) 173-178] introduced the concept of learning into the scheduling field. Biskup [D. Biskup, A state-of-the-art review on scheduling with learning effect, European Journal of Opterational Research 188 (2008) 315-329] classified the learning approaches in the literature into two main streams. He claimed that the position-based learning seems to be a realistic model for machine learning, while the sum-of-processing-time-based learning is a model for human learning. In some realistic situations, both the machine and human learning might exist simultaneously. For example, robots with neural networks are used in computers, motor vehicles, and many assembly lines. The actions of a robot are constantly modified through self-learning in processing the jobs. On the other hand, the operators in the control center learn how to give the commands efficiently through working experience. In this paper, we propose a new learning model that unifies the two main approaches. We show that some single-machine problems and some specified flowshop problems are polynomially solvable.  相似文献   

7.
In this paper, we analyze the two-machine flowshop problem with the makespan minimization and the learning effect, which computational complexity was not determined yet. First, we show that an optimal solution of this problem does not have to be the ‘permutation’ schedule if the learning effect is taken into consideration. Furthermore, it is proved that the permutation and non-permutation versions of this problem are NP-hard even if the learning effect, in a form of a step learning curve, characterizes only one machine. However, if both machines have learning ability and the learning curves are stepwise then the permutation version of this problem is strongly NP-hard. Furthermore, we prove the makespan minimization problem in m-machine permutation proportional flowshop environment remains polynomially solvable with identical job processing times on each machine even if they are described by arbitrary functions (learning curves) dependent on a job position in a sequence. Finally, approximation algorithms for the general problem are proposed and analyzed.  相似文献   

8.
9.
This paper addresses single-machine scheduling problems under the consideration of learning effect and resource allocation in a group technology environment. In the proposed model of this paper the actual processing times of jobs depend on the job position, the group position, and the amount of resource allocated to them concurrently. Learning effect and two resource allocation functions are examined for minimizing the weighted sum of makespan and total resource cost, and the weighted sum of total completion time and total resource cost. We show that the problems for minimizing the weighted sum of makespan and total resource cost remain polynomially solvable. We also prove that the problems for minimizing the weighted sum of total completion time and total resource cost have polynomial solutions under certain conditions.  相似文献   

10.
In traditional scheduling problems, the processing time for the given job is assumed to be a constant regardless of whether the job is scheduled earlier or later. However, the phenomenon named “learning effect” has extensively been studied recently, in which job processing times decline as workers gain more experience. This paper discusses a bi-criteria scheduling problem in an m-machine permutation flowshop environment with varied learning effects on different machines. The objective of this paper is to minimize the weighted sum of the total completion time and the makespan. A dominance criterion and a lower bound are proposed to accelerate the branch-and-bound algorithm for deriving the optimal solution. In addition, the near-optimal solutions are derived by adapting two well-known heuristic algorithms. The computational experiments reveal that the proposed branch-and-bound algorithm can effectively deal with problems with up to 16 jobs, and the proposed heuristic algorithms can yield accurate near-optimal solutions.  相似文献   

11.
This paper considers the relocation problem arising from public re-development projects cast as a two-machine flowshop scheduling problem. In such a project, some buildings need to be torn down and re-constructed. The two processes of tearing down and re-constructing each building are often viewed as a single operation. However, under certain circumstances, the re-construction process, i.e., the resource recycling process, can be viewed as a separate operation. In this paper we regard these two processes as separate on the assumption that they are handled by different working crews. We formulate the problem as a resource-constrained two-machine flowshop scheduling problem with the objective of finding a feasible re-development sequence that minimizes the makespan. We provide problem formulations, discuss the complexity results, and present polynomial algorithms for various special cases of the problem.  相似文献   

12.
This paper presents a bicriterion analysis of time/cost trade-offs for the single-machine scheduling problem where both job processing times and release dates are controllable by the allocation of a continuously nonrenewable resource. Using the bicriterion approach, we distinguish between our sequencing criterion, namely the makespan, and the cost criterion, the total resource consumed, in order to construct an efficient time/cost frontier. Although the computational complexity of the problem of constructing this frontier remains an open question, we show that the optimal job sequence is independent of the total resource being used; thereby we were able to reduce the problem to a sequencing one. We suggest an exact dynamic programming algorithm for solving small to medium sizes of the problem, while for large-scale problems we present some heuristic algorithms that turned out to be very efficient. Five different special cases that are solvable by using polynomial time algorithms are also presented.  相似文献   

13.
This paper studies the two-machine permutation flowshop scheduling problem with anticipatory setup times and an availability constraint imposed only on the first machine. The objective is to minimize the makespan. Under the assumption that interrupted jobs can resume their operations, we present a polynomial-time approximation scheme for this problem.  相似文献   

14.
This paper investigates flowshop scheduling problems with a general exponential learning effect, i.e., the actual processing time of a job is defined by an exponent function of the total weighted normal processing time of the already processed jobs and its position in a sequence, where the weight is a position-dependent weight. The objective is to minimize the makespan, the total (weighted) completion time, the total weighted discounted completion time, and the sum of the quadratic job completion times, respectively. Several simple heuristic algorithms are proposed in this paper by using the optimal schedules for the corresponding single machine problems. The tight worst-case bound of these heuristic algorithms is also given. Two well-known heuristics are also proposed for the flowshop scheduling with a general exponential learning effect.  相似文献   

15.
We consider the two-machine flowshop scheduling problem where jobs have random processing times which are bounded within certain intervals. The objective is to minimize total completion time of all jobs. The decision of finding a solution for the problem has to be made based on the lower and upper bounds on job processing times since this is the only information available. The problem is NP-hard since the special case when the lower and upper bounds are equal, i.e., the deterministic case, is known to be NP-hard. Therefore, a reasonable approach is to come up with well performing heuristics. We propose eleven heuristics which utilize the lower and upper bounds on job processing times based on the Shortest Processing Time (SPT) rule. The proposed heuristics are compared through randomly generated data. The computational analysis has shown that the heuristics using the information on the bounds of job processing times on both machines perform much better than those using the information on one of the two machines. It has also shown that one of the proposed heuristics performs as the best for different distributions with an overall average percentage error of less than one.  相似文献   

16.
This paper considers a flowshop‐scheduling problem with a waiting time constraint imposed to restrict the processing of the two operations of each job. If the second operation of a job cannot start within a specified waiting time after the completion of its first operation, then an extra processing time will be incurred for its second operation as a penalty. We first show that even a greatly restricted version of the problem is strongly ????‐hard. We then develop an O(n2) algorithm to determine the makespan of a processing sequence of the jobs.  相似文献   

17.
In this paper we introduce a new scheduling model with learning effects in which the actual processing time of a job is a function of the total normal processing times of the jobs already processed and of the job’s scheduled position. We show that the single-machine problems to minimize makespan and total completion time are polynomially solvable. In addition, we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain agreeable conditions. Finally, we present polynomial-time optimal solutions for some special cases of the m-machine flowshop problems to minimize makespan and total completion time.  相似文献   

18.
In many realistic situations, the more time you practice, the better learning effect you obtain. Thus, we propose a time-dependent learning effect and introduce it into the single-machine group scheduling problems. The two objectives of scheduling problems are to minimize the makespan and the total completion time, respectively. We also provide two polynomial time algorithms to solve these problems.  相似文献   

19.
This paper considers a two-machine flowshop scheduling problem with a separated maintenance constraint. This means that the machine may not always be available during the scheduling period. It needs a constant time to maintain the machine after completing a fixed number of jobs at most. The objective is to find the optimal job combinations and the optimal job schedule such that the makespan is minimized. The proposed problem has some practical applications, for example, in electroplating process, the electrolytic cell needs to be cleaned and made up a deficiency of medicine. In this paper, we propose a heuristic algorithm to solve this problem. Some polynomially solvable cases and computational experiments are also provided.  相似文献   

20.
This research investigates a two-stage hybrid flowshop scheduling problem in a metal-working company. The first stage consists of multiple parallel machines and the second stage has only one machine. Four characteristics of the company have substantiated the complexity of the problem. First, all machines in stage one are able to process multiple jobs simultaneously but the jobs must be sequentially set up one after another. Second, the setup time of each job is separated from its processing time and depends upon its preceding job. Third, a blocking environment exists between two stages with no intermediate buffer storage. Finally, machines are not continuously available due to the preventive maintenance and machine breakdown. Two types of machine unavailability, namely, deterministic case and stochastic case, are identified in this problem. The former occurs on stage-two machine with the start time and the end time known in advance. The latter occurs on one of the parallel machine in stage one and a real-time rescheduling will be triggered. Minimizing the makespan is considered as the objective to develop the optimal scheduling algorithm. A genetic algorithm is used to obtain a near-optimal solution. The computational results with actual data are favorable and superior over the results from existing manual schedules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号