首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于卡尔曼滤波的航姿参考系统设计   总被引:1,自引:0,他引:1  
针对传统的航姿参考系统AHRS(Attitude and Heading Reference System)中姿态角精度不高的问题,设计了一种新型的基于卡尔曼滤波的姿态检测系统。该系统采用了三轴磁传感器、三轴陀螺仪及三轴加速度计,用四元数的方法来描述载体运动的姿态,通过陀螺仪测姿态四元数,卡尔曼滤波算法融合加速度计和磁传感器数据,对姿态四元数进行修正,从而提高姿态解算精度。实验数据表明,系统能够较好修正陀螺仪漂移,且三个角度的均方根误差均优于0.25°,具有良好的噪声抑制能力。  相似文献   

2.
多传感信息融合的改进扩展卡尔曼滤波定姿   总被引:1,自引:0,他引:1  
邹波  张华  姜军 《计算机应用研究》2014,31(4):1035-1038
针对现有多传感器融合方法精度低、计算复杂等问题,提出了利用微惯性航姿系统的高精度传感器陀螺仪、加速度计和磁力计组合确定姿态的算法。对采集到的原始数据进行误差补偿和滤波,降低传感器本身噪声,采用四元素的四阶龙格库塔法求解陀螺仪的角度消除奇点问题。将陀螺仪数据作为预测数据,估计出卡尔曼的过程协方差;加速度计和磁力计数据作为观测数据,结合陀螺仪的误差估计出测量噪声协方差,通过卡尔曼滤波实现多传感信息融合,实现了准确的姿态定位。实验分析不同算法的误差,证明了算法的精确性和可靠性。  相似文献   

3.
针对吊钩运动不定且易受大风、雾气等影响其作业效率问题,提出并实现基于MEMS传感器的吊钩姿态估计系统;建立吊钩三维空间运动模型,消除吊钩扭转影响;通过四元数的扩展卡尔曼滤波算法,对MEMS陀螺仪、加速度计与磁强计进行数据融合,解算得到吊钩三维姿态、摆角与摆向;采用基于视觉检测的吊钩空间姿态为参考基准,对起重机吊钩进行姿态估计验证;实验结果表明:该系统能有效融合MEMS传感器数据,获得高精度的吊钩姿态,实现姿态的实时检测。  相似文献   

4.
基于MEMS惯性传感器的机器人姿态检测系统的研究   总被引:4,自引:0,他引:4  
提出了一种基于MEMS惯性传感器的机器人姿态检测系统,并对检测系统的原理,组成以及数据采集进行了研究.并对陀螺仪和加速度计的影响因素进行说明,利用硬件对采集的数据进行滤波处理.通过卡尔曼滤波方法实现数据融合,充分地利用惯性传感器的信息,从而有效地提高姿态检测系统的检测精度.仿真试验表明了卡尔曼滤波方法对于提高检测精度是切实有效的.在实际的试验中也取得了很好的效果,并应用于实际的机器人姿态检测.  相似文献   

5.
以两轮平衡车的平衡姿态研究为背景,提出了一种基于陀螺仪与加速度计的两轮平衡机器人的姿态检測系统,对姿态检測系统的原理、组成及数据采集进行了研究。通过对各传感器输出信号特征的提取、分析,将PID控制算法与卡尔曼滤波思想相结合,实現了数据融合,从而有效地提高姿态检测系统的检测精度。经过软硬件的综合调试取得了良好的效果,并应用到实际的机器人姿态检测。  相似文献   

6.
针对应用三轴陀螺仪和三轴加速度传感器的四旋翼飞行器姿态角测量问题,提出了基于Kalman滤波算法的姿态传感器信号融合方法。该方法将陀螺仪输出的角速度误差作为时变误差处理,认为陀螺仪输出的角速度误差与其所测角速度及上一时刻的角速度输出误差相关,并据此建立陀螺仪测量线性方程,在此基础上,应用Kalman滤波算法,以加速度计输出的姿态角对陀螺仪测量的姿态角进行修正,从而达到姿态角准确测量的目的。实验结果表明:应用Kalman滤波算法对加速度传感器和陀螺仪信号融合后可有效消除姿态角测量累积误差并显著改善姿态角测量的动态特性。  相似文献   

7.
基于机动检测的捷联航姿算法研究   总被引:1,自引:0,他引:1  
针对低精度陀螺仪、加速度计和磁传感器组成的捷联航姿系统存在的易受载体运动加速度影响而导致姿态精度下降甚至发散的问题进行了研究,提出了一种基于机动检测的捷联航姿算法。该算法根据陀螺仪数据进行姿态实时更新,利用加速度计和磁传感器输出对载体姿态误差进行校正以保持航姿输出的长期精度。算法根据加速度计输出在导航系中投影的水平分量进行机动检测,剔除机动期间的加速度数据,利用载体匀速运动状态下的加速度数据与磁传感器数据构造量测,利用卡尔曼滤波器对姿态误差进行估计并修正。仿真结果表明,该算法能有效完成载体机动检测,保证系统存在机动的情况下姿态精度满足应用要求。  相似文献   

8.
基于数据融合的两轮自平衡小车控制系统设计   总被引:7,自引:0,他引:7  
为解决两轮自平衡系统中传感器存在较大震动干扰与漂移误差的问题,并提高系统姿态倾角测量的精确性和实时性,提出了基于陀螺仪与加速度计数据融合的两轮系统自平衡控制方法。建立两轮自平衡系统的动力学模型,采用卡尔曼滤波算法融合陀螺仪与加速度计信号,得到系统姿态倾角与角速度最优估计值,通过双闭环数字PID算法实现两轮系统的自平衡控制。通过两轮小车自平衡控制系统的软硬件设计,成功验证了该方法的可行性与有效性。利用该方法大大提高了两轮自平衡系统的抗干扰性。  相似文献   

9.
阐述了MEMS加速度计/陀螺仪传感器数据的动作检测、偏移量更新、校准、传感器数据融合等处理技术在智能遥控系统中的应用。  相似文献   

10.
基于共轭梯度法和互补滤波相结合的姿态解算算法   总被引:1,自引:0,他引:1  
为了提高姿态解算精度,提出了一种基于共轭梯度和互补滤波相结合的多传感器数据融合策略。系统采用四元数方法进行姿态解算。利用加速度计和磁强计的输出数据,通过共轭梯度方法对姿态四元数进行寻优估计,再将其和利用陀螺仪输出数据更新的四元数进行互补滤波,解算出姿态角。实验测试表明,这种融合策略使姿态检测系统静态性能和和动态性能均有所提高,尤其在姿态剧烈变化时,其性能明显优于卡尔曼滤波和梯度下降法。  相似文献   

11.
多传感信息融合是实现轨道线形高精度检测的重要方法,而加速度计和陀螺仪是多传感信息融合中的关键传感器。为了解决加速度计和陀螺仪存在累积误差导致测量精度较低的问题,提出一种基于多传感信息融合的轨道线形检测方法。基于捷联惯性系统和双目视觉的测量原理,建立了双目视觉与惯性测量结合的多传感数据融合模型,并利用扩展卡尔曼滤波实现了双目视觉、加速度计和陀螺仪测量信息的融合,提高轨道线形检测精度。通过实验进行验证,结果表明:基于多传感信息融合方法的测量精度比惯性测量方法提高了近9倍,且测量所得坐标在三个方向上的最大位移绝对误差不超过0.536mm,可有效实现高精度轨道线形检测。  相似文献   

12.
针对小型尾坐式飞行器姿态估计问题,设计了由陀螺、加速度计、磁强计组成的姿态测量系统。为了抑制MEMS陀螺漂移导致的姿态误差,以四元数为状态变量,以加速度计和磁强计的输出作为观测变量,建立了滤波模型。采用平方根无迹卡尔曼滤波(SRUKF)对传感器信息进行融合,保证了滤波算法的数值稳定性。由于小型尾坐式飞行器抗干扰能力弱,引入自适应算法,解决了量测信息受到干扰时滤波精度下降的问题,提高了系统的鲁棒性和可靠性。仿真结果表明,存在外界磁场干扰时,姿态误差小于1°。通过实际飞行实验,验证了算法的可行性。  相似文献   

13.
提出了一种基于微机电系统(MEMS)惯性传感器的航姿测量系统。分析了一些传统姿态解算算法融合过程中的不足,提出一种高效的融合算法,利用梯度法将加速度计和磁力计对地球重力场和磁场矢量的观测量去修正陀螺给出的姿态信息。针对实际测量系统中振动对姿态的干扰问题,提出切比雪夫II型低通数字滤波器进行传感器数据预处理,并结合运动状态修正融合算法从而进一步抑制振动。通过实验表明:该系统的算法具有较低的计算负荷,能有效地估计出姿态,抑制振动有害加速度对姿态估计的影响,测量动态误差小于2°,静态误差小于0.8°。  相似文献   

14.
为了解决低成本微机电惯性导航系统存在的累积误差问题,提出一种基于融合行人航迹推算(PDR)和超宽带(UWB)无线定位的实时室内行人导航系统.利用加速度计和磁强计进行初始姿态对准;考虑滤波误差估计,推导了惯性导航算法;依靠加速度计和陀螺仪的"与"逻辑进行行人步态检测;实施零速更新(ZUPT)提供速度误差观测量,利用UWB系统提供位置误差观测量;设计具有野值辨识机制的扩展卡尔曼滤波器进行数据融合.对提出的行人导航算法进行实验验证,结果表明该行人导航算法与传统定位方法相比能够有效提高行人定位精度.实验中,该行人导航算法能够获取低于0.2 m的定位误差,且稳定、不发散.  相似文献   

15.
针对四旋翼飞行器飞行过程中的姿态最优估计问题,本着准确、快速的原则,选择了基于陀螺仪、加速度计和电子罗盘的捷联式惯性测量系统.由于这些传感器存在温度漂移和噪声干扰等问题,采用互补滤波算法,通过融合IMU多传感器的数据信号,对测得的姿态数据进行补偿修正,解算出高精度的姿态角.为了验证互补滤波算法的有效性和实用性,通过实际的四旋翼飞行器角度测量系统对互补滤波算法展开研究.结果表明姿态角解算中采用互补滤波算法能够快速、稳定的输出高精度姿态数据,姿态角最大跟踪误差控制在±2°以内,满足四旋翼飞行器飞行控制的要求,成功完成了姿态的最优估计.  相似文献   

16.
设计了基于微电子机械系统(Microelectro mechanical system,MEMS)惯性传感器集成模块ADIS16355的姿态测量系统。该姿态测量系统采用ADIS16355作为惯性测量单元,利用加速度计对重力向量的观测来修正陀螺给出的姿态信息,卡尔曼滤波实现传感器信息融合以计算运动载体的姿态角。介绍了ADIS16355的基本功能模块,阐述了两种传感器融合测量实时姿态角的方法并给出了卡尔曼滤波算法迭代过程。基于ARMv7架构的Cotex-M3微处理器设计了姿态测量系统硬件。采用AHRS500GA对该姿态测量系统性能进行了测量姿态角的验证实验。测试结果表明,该姿态测量系统能在动态条件下准确地测定运动物体实时姿态角,其误差一般在±1°左右。  相似文献   

17.
设计了一种基于MEMS陀螺仪、加速度计、磁传感器的小型姿态航向参考系统;以四元数和角速率偏差为状态矢量,磁场强度和加速度计信息为量测矢量,构建基于Kalman的四元数姿态航向解算方法;通过调整测量噪声方差矩阵,解决动态过程中由于运动加速度造成的姿态角误差;采用陀螺仪误差建模和磁航向罗差补偿技术,进一步提高了系统测量精度。根据飞行数据分析,姿态航向参考系统具有较高测量精度和较好的稳定性、动态性,姿态角均方根误差小于1.5°,航向角均方根误差小于3°。  相似文献   

18.
基于微陀螺、加速度计、磁强计以及GPS模块构建了姿态航向位置参考系统(Attitude heading position ref-erence system,AHPRS).首先,通过等效旋转矢量法由陀螺解算出估计姿态角;其次通过GPS、加速计的测量值,结合磁强计估计补偿姿态角,推导基于误差四元数的滤波方程,滤波器的周期...  相似文献   

19.
为了解决噪声和漂移等原因造成的误差不断累积的问题,针对陀螺仪的静态性能以及加速度计的动态性能,提出了一种利用六轴MEMS器件对照相机三脚架的稳定测量系统,介绍了MEMS器件的工作原理,介绍硬件系统和软件系统,完成了基于ADXR450陀螺仪和ADXL355加速度计的检测硬件系统设计,通过传感器获取角速度加速度信息,采用不同的滤波方式对输出结果进行了分析,比较卡尔曼滤波和一阶RC数字滤波;经比较,卡尔曼滤波实时性更好,一阶RC滤波动态响应更好;实验证明,系统静态下更适用于一阶滤波,计算出姿态测量角度误差在0.104°以内,得到理想的姿态信息,能有效地提高检测目标姿态的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号